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Abstract The increased ultraviolet-B (UV-B) radiation (280–320 nm) on the Earth’s surface is one of the 

most important concerns of global change. This concern is primarily because increased UV-B radiation has 

been unambiguously shown to be responsible for the majority of harmful effects on aquatic as well as 

terrestrial organisms, and thus influence ecological interactions. For the past 4 plus decades, many studies 

have been conducted on the damaging effects of elevated UV-B radiation on plants. These studies have 

shown a diverse range of responses to UV-B radiation, and might be in general arbitrarily divided into two 

classes, photomorphogenic and stress responses at the morphological, physiological, biochemical and 

molecular levels. Crop plants evolved different adaptive or defensive mechanisms to UV-B radiation, 

including accumulation of UV-absorbing sunscreens, production of enzymatic and non-enzymatic 

antioxidants, changes of phytohormones or activation of DNA-repairing enzymes. A diagram illustrating 

the general responses of UV-B radiation and complexity of the interactions among factors was developed. 

Three urgent specific researches are proposed, which might provide opportunities for genetic engineering 

and possibility of breeding to deal with potential crop yield reductions due to elevated UV-B in agricultural 

systems, and thus will play a major role in determining the crops future. 
Keywords: global change, UV-absorbing compounds, antioxidants, phytohormones, DNA-repair 

Introduction 

There has been significant interest in documenting the potential impacts of long-term 

increases in ultraviolet-B (UV-B, 280–320 nm) radiation on crop plants over the last 

several decades (Germ et al., 2006; Caldwell et al., 2007; Ballaré et al., 2011; Häder et al., 

2011; Liu et al., 2013). Great intraspecific variation in the responses of plants to UV-B 

radiation has been observed in main crops, e.g., wheat (Li et al., 2010; Zu et al., 2010; 

Singh et al., 2012; Schreiner et al., 2012), maize (Biggs and Kossuth, 1978; Correia et al., 

1999; Cartwright et al., 2001), soybean (Sullivan and Teramura, 1990; D’surney et al., 

1993; Caldwell et al.,1994; Feng et al., 2001; Li et al., 2002; Zu et al., 2003; Baroniya et 

al., 2013), rice (Barnes et al., 1990; Dai et al., 1994; Kumagai et al., 2001; Hidema and 

Kumagai, 2006) and sorghum (Ambasht and Agrawal, 1998; Kataria and Guruprasad, 

2012a). There has been significant interest in documenting the potential impacts of 

long-term increases in ultraviolet-B (UV-B, 280–320 nm) radiation on crop plants over 
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the last several decades (Germ et al., 2006; Caldwell et al., 2007; Ballaré et al., 2011; 

Häder et al., 2011; Liu et al., 2013). 

Direct effects of natural or enhanced levels of UV-B radiation on plant yield have been 

detected under field conditions. However, in quantitative terms, these effects tend to be 

modest, with growth reductions rarely exceeding 20% (Searles et al., 2001; Newsham and 

Robinson, 2009; Wargent et al., 2009; Ballaré et al., 2011). These differences in UV-B 

sensitivity among crops and cultivars can be due to different adaptive or defensive 

mechanisms to UV-B radiation, which provides opportunities for genetic engineering and 

possibility of breeding to deal with potential crop yield reductions due to elevated UV-B 

in agricultural systems, and thus will play a major role in determining the crops future.  

Relative to the 1979–1992 conditions, for the 2010–2020 time period, the GISS model 

results indicate a springtime enhancement of erythemal UV doses of up to 14% in the 

Northern hemisphere and 40% in the Southern hemisphere (Taalas et al., 2000). 

Therefore, the discovery of how crop plants interact with UV-B radiation, and what kind 

of protective strategies or mechanisms they possess in order to cope with the harmful 

UVB radiation, is essential to a better understanding of the balance between damage and 

protection.  

Earlier review on field crop responses to UV-B reported the effects of UV-B radiation 

on visual symptoms, cell and its components, leaf ultrastructure and anatomy, 

photosynthesis, growth and development, transpiration and stomatal conductance, 

production and yield, as well as interactions of UV-B with abiotic and biotic factors of 

crop plants such as low temperature and drought (Kakani et al., 2003; Breznik et al., 

2009). This article summarized much-needed and useful information to researchers 

regarding the general consequences of ultraviolet-B radiation on crop plants from the 

morphological, physiological, especially biochemical, cellular and molecular levels, and 

intended to raise genetic modification questions for molecular biologists and geneticists 

to address, which will aid future climate negotiations and support growers to maintain 

high productivity.  

 

Leaf morphology, anatomy and UV-absorbing compounds 

Photomorphogenic responses result in altered architecture or chemical composition 

and may be thought to be adaptive responses of plants to the incident radiation 

micro-climate, which may ultimately modify the penetration of UV radiation into plants 

(Beggs and Wellman, 1994; Ballaré et al., 1992, 2011). UV-induced morphological 

changes include thicker leaves, shorter petioles, shorter stems, increased axillary 

branching and altered root: shoot ratios (Robson et al., 2015). The epidermal attenuation 

appears to be the dominant UV-B screening mechanism in the majority of plants. In order 

for UV radiation to be effective in plants, it must effectively penetrate into the tissues and 

be absorbed. Ultraviolet penetration varies with plant species. Penetration of UV-B was 

found to be the greatest in herbaceous dicotyledons (broad-leaf plants) and was 

progressively less in woody dicotyledons, grasses and conifers (Day et al., 1992, 1993).  
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Enhanced UV-B reduced leaf area and leaf thickness (indicated by specific leaf 

weight) has been reported in maize, Amaranthus tricolor and sorghum varieties (Correia 

et al., 1999; Kataria and Guruprasad, 2012), while specific leaf area and length of 

internodes and petiole in Indian cress (Tropaeolum majus) were unaffected by enhanced 

UV-B radiation (Germ et al., 2015). The decrease in leaf thickness may have increased 

the UV-B penetration within leaves and decreased photosynthetic rates and dry weight 

accumulation. Increased epidermal cell wall thickness was also found in loblolly pine 

(Pinus taeda) and Scots pine (Laakso et al., 2000). Qi et al. (2003) found that there was a 

good correlation between total leaf thickness and total concentration of leaf UV-B 

absorbing compounds in southern broadleaf tree species in USA, and a strong presence of 

UV-absorbing compounds in the upper and lower epidermis, the vascular bundles and the 

leaf hairs, if present. However, the main site of UV-B attenuation took place within the 

upper leaf epidermis (Qi et al., 2003). 

The accumulation of flavonoids in the epidermis has been shown to reduce epidermal 

transmittance of UV-B radiation (Tevini et al., 1991), and those exhibited high epidermal 

transmittance may be less UV-B tolerant. Feng et al. (2003) found that the greater 

tolerance of soybean cultivar ‘Jindou’ to elevated UV-B exposures was attributed partly 

to its higher foliar flavonoid content, smaller leaf size, thicker leaf cuticle and scabrous 

(hairy) lamina. Differences in UV-absorption characteristics between a barley (Hordeum 

vulgare) mutant and the mother line indicated that the flavonoid mutant exhibits 

increased sensitivity to UV-B radiation, though the content of flavonoid in the mutant 

was only 7% compared to the mother variety in the primary leaf (Reuber et al., 1996). In 

addition, cuticular waxes and lignins may also serve protective roles by absorbing UV 

radiation (Caldwell et al., 1983). Wax content increased in tolerant genotypes while it 

decreased in the susceptible genotypes, because wax layer is an important surface 

character that responds to UV-B radiation (Kakani et al., 2004).  

UV-B radiation is an important environmental factor for many plants with remarkable 

influence on defence-related secondary metabolite biosynthesis (Germ et al., 2015). 

Many studies suggest that the accumulation of UV-absorbing phenylpropanoid 

compounds, mainly flavonoids, anthocyanins and related phenolics in cell vacuoles 

and/or cell walls of the leaf epidermis is a protective measure against UV-B effects on 

mesophyll tissue of a leaf (Robberecht and Caldwell, 1978; Schmelzer et al., 1988; Day, 

1993; Li et al., 1993; Beggs and Wellman, 1994; Rozema et al., 1997; Hutzler et al., 

1998; Bornman, 1999; Mazza et al., 2000; Bieza and Lois, 2001; Flint et al., 2004; 

Sullivan et al., 2007; Izaguirre et al., 2007). In fact, in a meta-analysis, Searles et al. 

(2001) found that an increase in UV-absorbing compounds in response to supplemental 

UV-B was the most consistently reported response to UV-B radiation. UV-B absorbing 

compounds are present throughout the leaf, but accumulate significantly in leaf trichomes 

and epidermal cells (Zancan et al., 2008). They have effective radical scavenging 

capabilities, and can contribute directly to enhance photoprotection against UV-B 

radiation (Smith and Markham, 1998; Karioti et al., 2008; Li et al., 2012).  

Arabidopsis flavonoid mutants are hypersensitive to UV-B radiation, thus confirming 

the role of flavonoids and other phenolic compounds in the UV-B protection of plants (Li 
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et al., 1993). In addition, another Arabidopsis mutant reported to be tolerant to lethal 

UV-B levels showed constitutively elevated accumulation of flavonoids and other 

phenolic compounds (Bieza and Lois, 2001). Flavonoids not only served as UV-B filters, 

but also were hypothesized to act as antioxidants, by absorbing UV-B radiation in the 

upper tissue layer and thus preventing damage to sensitive targets, their absence could 

lead to greater oxidative stress (Peng et al., 2003). Changes in flavonoid contents in wheat 

leaves have been observed under field conditions (Li et al., 2000). In soybean, increases 

in total leaf phenolics exposed to ambient UV radiation were demonstrated by Mazza et 

al. (2000).  

Levizou and Manetas (2002) showed significant correlations between total phenolic 

levels and UV-B absorbing capacity (simple methanolic absorbance at 300 nm). 

Enhanced UV-B radiation induced increased synthesis of total phenolic compounds in 

leaves, but not in flowers of Indian cress (Tropaeolum majus) (Germ et al., 2015). Koti et 

al. (2007) observed genotypic variation in the production of these compounds at high 

UV-B levels. However, opposite results were reported by different authors. Kreft et al. 

(2002) showed that exposure of buckwheat plants (Fagopyrum esculentum Moench) to 

elevated UV-B radiation reduced the accumulation of rutin, a flavonoid with antioxidant 

properties. Yao et al. (2006) found that effect of UV-B radiation on the concentration of 

the flavonoid rutin in buckwheat leaves depended on leaf position and the level of UV-B 

radiation. Rutin concentration was higher in top leaves than in lower ones regardless of 

the UV-B level, top leaves typically receive more radiation than lower leaves. Sullivan et 

al. (2007) did not find that even though UV-B absorbing compounds accumulated with an 

imposed stress, but these compounds were not directly related to sensitivity/tolerance of 

soybean genotypes.  

Intraspecific differences in the composition and concentration of flavonoids have been 

found among five cultivars of Cucumis sativus (Murali and Teramura, 1986) and in two 

cultivars of soybean (Murali et al., 1988), 20 cultivars of wheat (Li et al., 2000), 10 

soybean cultivars (Feng et al., 2001), and 20 soybean cultivars (Li et al., 2002). Screening 

of the total flavonoid contents in 20 Chinese soybean cultivars in a field study using 

UV-B lamps revealed that seven cultivars had increased total flavonoid levels while five 

showed decreased levels, and no changes were observed in eight cultivars (Zu et al., 

2003). Since alterations in the levels of individual flavonoids were not taken into account, 

UV-B could have had an impact on certain compounds without increasing the total level. 

Warren et al. (2003) found that certain flavonoids were selectively produced after UV-B 

exposure. 

A series of experiments provided convincing evidence that plants subjected to UV-B 

radiation responded to changes in the content and ratios of different flavonoid in leaf 

epidermal cells, wax, and hairs (Harborne and Williams, 2000). Some flavonoid 

increased much more than others, especially the flavonoids with ortho-hydroxy structures 

in B-ring such as quercetin and quercetin glycoside in Trifolium repens (Hofmann et al., 

2000), luteolin in Marchantia polymorpha (Markham et al., 1998), chlorogenic acid in 

Cucumis sativus (Kondo and Kawashima, 2000), isoorientin acylated glucosides in 

Oryza sativa (Markham et al., 1998).  
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Winter and Rostas (2008) confirmed that three of the analyzed flavonoids showed a 

significant increase in plants receiving full ambient radiation. Of these, two compounds 

were quercetin based flavonols, resulting in a shift in the relative flavonol content in favor 

of the quercetin glycosides and at the expense of kaempferol glycosides. As quercetin 

flavonols are known to have an improved ability as free radical scavengers due to the 

additional ortho-dihydroxyl group in the B-ring (Harborne and Williams, 2000) 

compared to kaempferol flavonols, it might be of advantage for the plants to invest more 

in quercetin flavonols under UV stress. Due to our lack in understanding of flavonoid 

function in plants, further studies would be worthwhile. Laboratory studies have 

demonstrated that the regulation of flavonoid biosynthesis may involve multiple 

photoreceptors, including the phytochromes, blue-absorbing photoreceptors, and one or 

more UV photoreceptors (Beggs and Wellmann, 1994).  

Genetic blocks in the synthesis of phenolic sunscreens in phenylpropanoid mutants are 

known to result in increased susceptibility to UV (e.g. Li et al., 1993; Lois and Buchanan, 

1994; Stapleton and Walbot, 1994; Landry et al., 1995; Reuber et al., 1996), however, it is 

not yet clear whether the slight variations in levels of UV-absorbing compounds that are 

commonly detected among varieties of the same species or between plants subjected to 

different UV regimes are physiologically significant under field conditions. 

The accumulation of anthocyanins in the vacuoles of epidermal cells where they 

attenuate the UV component of sunlight with minimal absorption of photosynthetically 

active radiation has also been suggested (Stapleton and Walbot, 1994; Landry et al., 

1995). Gould et al. (2002) reported that purified anthocyanin extracts showed strong 

antioxidant properties in vitro, and they can also scavenge reactive oxygen in living cells. 

By real-time imaging of H2O2 in cells after mechanical injury, they found that 

anthocyanins, among various flavonoids, were the only molecules suitably located to 

account for the enhanced rates of H2O2 scavenging, suggesting that anthocyanins have 

elevated antioxidant capabilities in vivo (Gould et al., 2002). Therefore, the mechanism 

by which anthocyanins confer UV protection may involve UV absorption or scavenging 

of reactive oxygen species (ROS), or both. In Arabidopsis thaliana, sinapate esters also 

provide UV-B attenuation, but this biosynthetic pathway is not present in corn (Zea mays) 

(Sheahan, 1996).  

Proline is regarded as an osmoprotectant, however, several authors implicated a role 

for proline in the detoxification of ROS (Saradhi et al., 1995; Matysik et al., 2002), and an 

enhanced accumulation of proline in soybean leaves could be linked with detoxification 

against Ni and UV-B induced oxidative stress (Prasad et al., 2005). 

A similar manner as ascorbate or glutathione and function as an electron donor for the 

peroxidase reaction was assumed (Takahama and Oniki, 2000). A key function of 

ascorbic acid in the apoplast is redox buffering, which protects the plasmalemma from 

oxidative damage. It has been demonstrated that the symplastic ascorbate redox state is 

relatively constant throughout the life of a cell, despite large changes in apoplastic 

ascorbate. Moreover, the ascorbate redox state in the apoplast is largely independent of 

that in the symplasm and the ascorbate pool in the apoplast is flexible. This flexibility 
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allows the cell to sense the environment and contribute to trigger molecular responses 

(Pignocchi and Foyer, 2003). 

Due to our lack in understanding of functional significance of natural variations in 

phenylpropanoid levels, there is a knowledge gap regarding the photocontrol of 

phenylpropanoid accumulation under field conditions, and the dynamics of specific 

compound accumulation, localization patterns and constitutive or background levels of 

UV-screening compounds warrant further studies.  

Besides the compounds mentioned above, recently, Smrkolj et al. (2006) proposed that 

selenium (Se) could protect plants from the harmful effects of UV-B radiation. They 

observed that enhanced UV-B radiation leads to higher selenium accumulation in flowers 

compared to ambient UV-B radiation conditions in buckwheat. Germ et al. (2009) found 

that for St. John’s wort (Hypericum perforatum L.) herb, the highest concentration of Se 

was found in plants exposed to reduced UV-B radiation, which might be a self-denfence 

mechanism involved in this plant for antioxidative effects. Therefore, Selenium can 

increase the tolerance of plants to UV-induced oxidative stress, and there could be a 

similar connection between radiation and selenium as that known for flavonoids and 

radiation. 

 

The antioxidant defense system 

To keep UV-B damage to a minimum, plants possess enzymatic and non-enzymatic 

antioxidative defense systems in cellular compartments (Bowler et al., 1992). UV-B 

exposure is known to lead to the generation of active oxygen species (AOS) and 

eventually results in oxidative stress in plants (Arnott and Murphy, 1991; Dai et al., 1997; 

Hideg et al., 2003; Kalbina and Strid, 2006). AOS not only function as destructive 

radicals, but also as signaling molecules during UV-B responses (Green and Fluhr, 1995; 

Mackerness et al., 1997, 2001; Mackerness and Jordan, 1999).  

The inhibition effect on plant growth and development was mainly due to enhanced 

oxidative stress caused by UV radiation (Jansen et al., 1998). It has also been reported 

that UV-B can promote the formation of lipid oxidation products, destroy the natural lipid 

soluble antioxidants (Salmon et al., 1990), and induce the expression of the genes which 

encode for antioxidants (Strid et al., 1994). 

It has already been demonstrated that plant cells and tissues protect themselves against 

oxidative insults through the up-regulation of a wide variety of antioxidants enzymes to 

UV-B exposure (Davies, 1986; Beligni and Lamattina, 1999; Chen et al., 2003). The 

main enzymatic antioxidant defense system includes enzymes such as superoxide 

dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), guaiacol peroxidase (POD; 

EC 1.11.1.7), ascorbate peroxidase (APX; EC1.11.1.11), glutathione reductase (GR; 

EC1.6.4.2), and dehydroascorbate reductase (DHAR; EC1.8.5.1) (Bowler et al., 1994; 

Kondo and Kawashima, 2000).  

SOD rapidly converts O2 to H2O2 which can then be converted to water and oxygen by 

CAT (Noctor and Foyer, 1998). Contrasting responses of SOD to UV-B exposure have 

been reported revealing no uniform responses. For example, SOD activity was increased 
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by UV-B radiation in pea and wheat (Alexieva et al., 2001), Arabidopsis (Rao and 

Ormord 1995), Lemna gibba (Babu et al., 2003) and rice (Dai et al., 1997), but was not 

affected in barley (Mazza et al., 1999) and soybean (Malanga et al., 1999), and was 

decreased in sunflower cotyledon (Costa et al., 2002).  

Also, SOD expression was not affected by UV-B radiation in Nicotiana 

plumbaginifolia L. (Willekens et al., 1994), but was decreased in Pisum sativum (Strid et 

al., 1994). In a field study, supplemental UV-B increased SOD activity in wheat and 

mung bean (Agrawal and Rathore, 2007). 

CAT is a constitutive component of peroxisomes and has a low substrate affinity 

(Corpas et al., 1999). An alternative mode of H2O2 destruction is via APX which is found 

throughout the cell (Jimenez et al., 1997). APX is a specific peroxidase that catalyzes the 

breakdown of H2O2 at the expense of oxidizing ascorbate to monodehydroascorbate. 

APX isozymes are distributed in at least four cells compartments: the stroma, the 

thylakoid membrane, the microbody, and the cytosol (Asada, 1992). The removal of 

H2O2 through series of reactions is known as the ascorbate–glutathione cycle (Noctor and 

Foyer, 1998). 

Synthesis of antioxidant enzymes like POD, APX and SOD have been observed in 

UV-B treated Arabidopsis thaliana seedlings (Rao et al., 1996). Liu and McClure (1995) 

revealed that POD enzyme activities were increased under UV-B irradiation to adapt to 

the oxidative stress, and the SOD activities were changed differently according to the 

UV-B irradiation intensities (Tekchandani and Guruprasad, 1998).  

Although it is not known how plants irradiated with UV-B generate AOS, it is thought 

that NADPH oxidase may be involved in the generation of AOS (Rao et al., 1996). Direct 

evidence of induction of NADP-malic enzyme by UV-B radiation was observed in 

leaves, stems and roots of three bean cultivars (Pinto et al., 2002). These results suggest 

that NADP-malic enzymes play an active role in plant defense responses against UV-B, 

possibly by providing NADPH for lignin and flavonoid biosynthesis. It is also possible 

that measures of only total activities of enzymes may not adequately reflect UV-induced 

compartment-specific changes or enzyme alterations that do not change total activity. For 

example, UV-B could differently regulate enzyme isoforms as reported for POD (Murali 

et al., 1988), CAT (Willekens et al., 1994), SOD (Babu et al., 2003; Rao et al., 1996) and 

APX (Yannarelli et al., 2006a) in previous studies. More studies are needed to resolve 

these issues. 

Logemann et al. (1995) found UV-induction of enzymes can provide carbon substrates 

for the shikimate pathway, while Casati and Walbot (2003) proposed that induction of 

enzymes that can also provide energy in the form of ATP for the synthesis of these and 

other molecules necessary for cell functions under UV-B stress. Shweta and Agrawal 

(2006) have shown that simultaneous exposure of UV-B+Cd and UV-B+Ni caused 

increased accumulation of malondiadehyde (MDA) content in spinach. Increased MDA 

content caused by UV-B indicated a loss of membrane function and induction of 

oxidative damage (Li et al., 2012). Elevated MDA content is regarded as a sensitive 

indicator of oxidative stress in plants exposed to different stresses including Cd and 

UV-B (Wang et al., 2008). 
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A hierarchical cluster analysis by Zu et al. (2003) indicated that the contribution of 

each physiological indicator (% change) to the overall sensitivity of soybean cultivars to 

enhanced UV-B radiation had the following sequence: SOD activity, membrane 

permeability, flavonoid contents, malonaldehyde (MDA) contents, chlorophyll a 

contents, chlorophyll b contents. Zu et al. (2010) further demonstrated that UV-B induced 

oxidative stress via indirect mechanisms such as inhibition of antioxidative defense 

systems, or via the activation of ROS-producing enzymes such as NADPH oxidases.  

Studies on the effects of UV-B on the enzymatic antioxidants at both the activity level 

(Agrawal and Rathore, 2007; Yannarelli et al., 2006b) and the mRNA level (Willekens et 

al., 1994) have yielded inconsistent results so it is not clear how uniform this response is 

among plant species and how this may be modified by concurrent environmental 

conditions. Yannarelli et al. (2006b) demonstrated that increased HO
-
 activity was 

associated with augmented protein expression and transcript levels. 

The non-enzymatic defense system consists of low molecular weight antioxidants 

such as proline, ascorbate, glutathione, α-tocopherol, and carotenoids (Larson, 1988; Rao 

et al., 1996; Arora et al., 2002; Matysik et al., 2002; Giordano et al., 2004; Jain et al., 

2004; Shiu and Lee, 2005). Ascorbic acid (AsA) is a major primary antioxidant reacting 

directly with hydroxyl radicals, superoxide and singlet oxygen, and also a powerful 

secondary antioxidant reducing the oxidized form of α-tocopherol. Increases in the AsA 

pool in response to UV-B exposure have been observed in several species (Galatro et al., 

2001; Dai et al., 1997; Takeuchi et al., 1996; Rao and Ormord, 1995). However, in maize 

seedling, UV-B exposure had no effect on the AsA content (Carletti et al., 2003). 

Glutathione is the major low molecular weight thiol compound in most plants (Foyer et 

al., 1994). Overall, glutathione (or homoglutathione) appears to play a role in protection 

against oxidative damage arising from a number of stresses such as irradiation, heat, and 

exposure to heavy metals (Grill et al., 1985). Moreover, ascorbic acid and glutathione 

may be involved in several types of protective mechanisms (Wefers and Sies, 1988). The 

reduced and oxidized forms of ascorbate and glutathione are transported across the 

chloroplast envelope (Anderson et al., 1983; Beck et al., 1983) by transporters whose 

activity may be changed in response to stress.  

Ultraviolet radiation has been shown to be very effective in inducing lipid oxidation of 

biological membranes (Kochevar, 1990; Foyer et al., 1994), polyunsaturated fatty acids 

(Yamashoji et al., 1979) and phospholipid liposomes (Pelle et al., 1990). There is a 

considerable amount of data that demonstrates ways in which UV radiation alters 

membrane structure or function: changes in membrane permeability, inhibited K-ATPase 

and peroxidized lipids in wheat (Triticum aestivum) (Li et al., 2000; Wright et al., 1981) 

and decreased membrane resistance in Chara coralline (Doughty and Hope, 1973). The 

damage to nonphotosynthetic membranes that are detected by electron microscopy 

generally requires high fluence or occurs only after a long lag time following irradiation. 

In the latter case, the effect of UV can be regarded as an acceleration of normal 

senescence processes (Skokut et al., 1977). The physiological effects of UV stimulated 

membrane changes are uncertain. There is little evidence that the UV damage to 
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membranes is responsible for cell death. UV stimulated membrane changes may play a 

role in the UV-induced synthesis of anthocyanins (Murphy, 1983). 

Hydrogen peroxide is known to diffuse across biological membranes and causes 

cellular damage. An increase in lipid peroxidation and H2O2 was demonstrated following 

UV-B treatments (Mishra et al., 2011). Understanding the mechanisms for removal of 

AOS is important for UV studies because increasing evidence suggests that AOS are 

involved in the damage caused by UV-B radiation. For example, UV-B radiation has been 

shown to increase AOS levels (Kalbina and Strid 2006; Hideg et al., 2003) and lipid 

peroxidation (Yannarelli et al., 2006b; Yang et al., 2005) in plants.  

Therefore, adaptation or acclimation to photooxidative stress is multifactorial and 

many factors are involved in the overall defense strategy of the plant. A more indepth 

understanding of the generation and scavenging of AOS is needed before this relationship 

can be fully understood. However, very few studies have been conducted on the impacts 

of solar UV-B radiation on enzymes and antioxidants under natural and UV-B exclusion 

conditions (Mazza et al., 1999; Agrawal and Rathore 2007; Xu et al., 2008a).  

 

Phytohormones responses to UV-B  

It is well known that phytohormones play a vital role in the regulation of the growth 

and development of higher plants, as they are involved in controlling the ongoing process 

in the cell division, elongation and development, morphogenesis, and biological 

production (Beffa et al., 1990; Liu et al., 2010). The importance of the five “classical” 

classes of phytohormones in higher plants is well established. More recently, several 

other molecules have also been recognized as phytohormones. These include jasmonic 

acid (JA), salicylic acid (SA), brasinosteroids (BR) and polyamines (PA) (Saruhan et al., 

2012).  

The synthesis and action of phytohormones are modulated by environmental factors 

(Lachno and Baker, 1986). Plant hormones are the initiation factor of 

adversity-responsive gene expression (Zaffari et al. 1998). Studies indicated that a 

relatively small increase in UV-B can have dramatic effects on synthesis, transport, and 

allocation of plant endogenous hormones such as indole-3-acetic acid (IAA), cytokinin 

(CTK), and abscisic acid (ABA) etc., which resulted in inhibition of cell elongation, 

stomatal closure, and decreasing photosynthetic rate (Keiller and Holmes, 2001).  

Photooxidation free-radical damage caused by strengthening UV-B radiation 

decreased IAA and gibberellins (GA) content, but increased indole acetic acid oxidase 

(IAAO) activity, which reinforced the harm from free radical induced by UV-B stress 

(Huang et al., 1997; Wang and Li, 2000; Huang et al., 2005). 

Reduction in plant height has often been used as an index to assess the degree of UV-B 

radiation sensitivity (Biggs and Kossuth, 1978). UV-B radiation significantly dwarfed 

soybean, primarily due to shorter internodes rather than smaller node number (Teramura, 

1980). This could be due to photo-oxidative destruction of the phytohormone IAA 

followed by reduced cell wall extensibility as demonstrated in sunflower seedlings (Ros 

and Tevini, 1995). The levels of ethylene, which promote radial growth and reduce 
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elongation, are increased after irradiation with UV-B (Caldwell et al., 1995). However, 

the mechanism for UV-B radiation to increase plant height is still not clear. UV-B 

radiation may directly affect cell division and some intrinsic growth characteristics 

(Beggs et al., 1985). 

It is believed that GA signaling is essential for internode elongation, cambial activity, 

and fiber differentiation, which has been documented in tobacco stems (Dayan et al., 

2012). Phytochromes regulate GA synthesis during germination and seedling 

establishment. However, in the UV region of the spectrum, the absorption spectra for Pr 

and Pfr exhibit little discrimination (Lagarias et al., 1987; Chen et al., 2004) so this family 

of photoreceptors may not be involved in controlling soybean internode elongation.  

Luo et al. (2006) and Zhu et al. (2006) demonstrated that several GA hormones were 

present in high concentrations in the upper-most internode of a mutant rice plant and were 

involved in the elongation of this internode. Also Sharma and Guruprasad (2009) 

demonstrated similarities in response of young Amaranthus caudatus plants to exclusion 

of UV-B and exclusion of both UV-A and UV-B with responses to external application of 

GA3, including increased hypocotyl lengths.  

Changes in plant height caused by increases in the internode lengths due to UV-B 

radiation were likely mediated by a change in the presence of phytohormones or plant 

growth regulators, but the genetic mechanisms and biochemical syntheses that cause the 

changes are not known. Several experiments suggest the causal phytohormone is likely to 

be a GA, judged from the effect of exogenous applied GA upon soybean. Mislevy et al. 

(1988) applied GA3 to soybean at seedling emergence and found hypocotyl elongation 

and elongation of the 1st and 2nd internodes 

Peng and Zhou (2009) using hydroponics culture investigated the effects of La III on 

the contents of endogenous hormone in soybean seedlings under elevated ultraviolet-B 

radiation (280–320 nm). They showed that the content of IAA in soybean seedlings 

decreased initially and then increased when the seedlings underwent UV-B treatment 

during the stress and convalescent period, while indole acetic acid oxidase (IAAO) 

activity increased at first and then decreased. A similar change of ABA content and IAAO 

content in soybean seedlings occurred; GA content decreased during the experiment 

compared with control. They also found that the content of IAA and GA in soybean 

seedlings with La III + UV-B treatment was higher than those of UV-B treatment; IAAO 

activity and GA content in soybean seedlings with La III + UV-B treatment were lower 

than those of UV-B treatment.  

One function of ABA is to regulate activity of the stomatal guard cells. In bad 

conditions, accumulation of ABA in plant tissue can reduce stomatal conductance, caused 

stomatal closure, and inhibit photosynthesis. Studies have showed that UV-B leads to 

stomatal closure or incremented stomatal resistance (Tevini and Teramura, 1989; Bjorn, 

1996), which resulted from leakage of K from the guard cell or changes of the stomatal 

regulated hormone ABA content (Yang et al., 2000). 

The process of ABA induced stomatal closure required H2O2, and NO to attend, and 

the accumulation of ABA content by UV-B radiation originated from increased 

chloroplast membrane permeability, turgor loss, and disengaged inhibitory action of an 
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ABA synthetic (Burnett et al., 2000; Wang et al., 2001). Alonso et al. (2015) found that 

the triterpene squalene and the diterpene phytol were significantly higher in the treatment 

with combinations of water deficit, solar UV-B and ABA applications, and two 

application of ABA on leaves and berries, at veraison and 15 days after, were enough to 

activate compounds with antioxidant and antifungal properties, and thus proposed it as a 

possible acclimation mechanism that modifies membrane fluidity under environmental 

signals both biotic and abiotic.  

Salicylic acid (SA) is considered to be an important signalling molecule, which plays 

an important role in regulating a number of physiological processes and plant resistances 

to stresses (Saruhan et al., 2012). Studies have demonstrated that SA can ameliorate the 

injurious effects of abiotic stresses on crops (Nazar et al., 2011; Bandurska and Cieślak 

2013). Belkhadi et al. (2010) found that SA pre-soaking counteracted Chl destruction, 

and the foliar application of SA proved to be equally fruitful in increasing the pigment 

content (Hayat et al., 2005). 

Plants accumulate large amounts of SA when exposed to UV radiation and SA is 

thought to be directly involved in signalling various antioxidant responses (Larkindale 

and Knight 2002; Bandurska and Cieślak 2013). Several reports show that SA can induce 

antioxidant activity under multiple stresses (Mutlu et al., 2009; Saruhan et al., 2012). A 

decline in activities of CAT, POD, and SOD was observed in plants treated with SA 

(Choudhury and Panda, 2004).  

Li et al. (2014) showed that SA alleviated the adverse effects of Cd and/or UV-B on 

growth, and pigment content, but did not mitigate the inhibitory effect of Cd on 

chlorophyll fluorescence parameters in soybean seedlings. Cd and/or UV-B induced 

oxidative stress and increased lipid peroxidation that was significantly decreased by SA 

pre-treatment. They also showed that the Cd and/or UV-B increased SOD activity, 

decreased POD activity, and CAT activity was mostly unaltered. They thus proposed that 

SA might act as one of the potential antioxidants as well as a stabilizer of membrane 

integrity to improve plant resistance to the Cd and/or UV-B stress. Ervin et al. (2004) 

found that exogenous SA application alleviated the damaging effects induced by UV-B 

radiation in Kentucky bluegrass. SA stimulates photosynthetic machinery by increasing 

the content of chlorophyll in UV-stressed plants (Mahdavian et al., 2008). Stratmann 

(2003) reported that UV radiation may influence JA levels and lead to an overlap in gene 

expression caused by UV-B and herbivory.  

However, the mechanism of plant hormones including SA- and JA-induced resistance 

to UV-B radiation is still unclear.  

 

DNA damage and genetic consequences 

Because of its absorption spectrum, DNA is a major target of UV-B damage; even 

low doses of radiation can kill mutants lacking specific DNA repair pathways (Britt et 

al., 1993; Britt, 1996; Landry et al., 1997). UV-B radiation is reported to cause cellular 

damage by generating photoproducts in DNA and direct damage to proteins (Gerhardt 

et al., 1999; McNamara and Hill, 2000; Bray and West, 2005). 
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A variety of DNA damage caused by UV radiation is due to direct absorption of 

UV-B radiation by the native DNA molecule or indirectly by oxidative stress via free 

radicals and reactive oxygen species (ROS) (Latifi et al., 2009). Hargreaves et al. (2007) 

proposed that UV-A radiation that is not directly absorbed by DNA, can still induce 

DNA damage either by producing a secondary photoreaction of existing DNA 

photoproducts or via indirect photosensitizing reactions. The measurements of DNA 

damage by Mazza et al. (2000) showed that the UV-B component of sunlight induced 

greater perturbations in the cells of those leaves that scored as more UV transparent in 

the fluorescence determinations. They also determined that, under field conditions, 

most of the sunscreen response induced by solar UV in soybean can be attributed to the 

UV-B component. 

Repair mechanism of plants includes repair of DNA damages by excision repair or 

by repair of pyrimidine dimers as photolyase, activated by UV-A and 

photosynthetically active radiation (Britt, 1996; Taylor et al., 1997). Absorption of 

UV-B radiation by DNA causes phototransformations resulting in the production of 

cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6–4) pyrimidona dimers (6–4 

PPs). Because DNA and RNA polymerases are not able to read through these 

photoproducts, their elimination by CPD photolyases is essential for DNA replication 

and transcription (Britt and May, 2003). 

It is well-documented that elevated UV-B radiation causes an up-regulation of genes 

and enzymes involved in the phenylpropanoid pathway (Chappell and Hahlbrock, 1984; 

Rozema et al., 1997; Ryan et al., 2002). Chalcone synthase (CHS; EC 2.3.1.74) catalyzes 

the first step reaction of the flavonoid biosynthesis, it may be possible to increase the 

production of UV-B-protective flavonoids by genetically improving the expression of 

CHS. Soybean CHS is encoded by a multigene family (GmCHS) of at least eight 

members (GmCHS1-GmCHS8) (Akada and Dube, 1995). Shimizu et al., (2000) reported 

that the expression of every member of the family was induced by exposure to white light 

and was enhanced further by supplemental UV-B radiation, except for that of GmCHS2. 

It has been shown that under realistic UV-B conditions, reduction in Rubisco levels is the 

primary cause for the decline in photosynthetic rate (Allen et al., 1997; Baker et al., 

1997). Similarly, reduction in the expression and synthesis of Lhcb, encoding the 

harvesting complex proteins, and psbA, encoding the D1 polypeptide of PSII, could have 

potential impacts on the efficiency of the photosynthetic system (Jordan et al., 1998; 

Mackerness et al., 1997). Photosynthetic genes may be down-regulated (Surplus et al., 

1998; Mackerness et al., 2001; Jordan, 2002).  

Casati and Walbot (2003) examined the response of gene expression in maize to 

solar UV-B under field conditions, and found several photosynthesis-associated genes 

were decreased and antioxidant-associated genes were increased. Also, the genes 

involved in fatty acid metabolism and oxylipin biosynthesis were increased by solar 

UV-B (Izaguirre et al., 2003). Using microarray analysis, Casati and Walbot (2004) and 

Ulm et al. (2004) identified more than 100 UV-B responsive genes in maize and 

Arabidopsis, respectively. Yannarelli et al. (2006b) indicated that the up-regulation of 

HO-1 mRNA occurs in a manner similar to that found in other genes implicated in the 
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UV-B response. These results are the most comprehensive data currently available on 

the effects of solar UV-B on plant gene expression, and the actual signal transduction 

pathways activated by UV-B radiation are not yet well defined (Stratmann et al., 2000; 

Miles et al., 2002). 

Earlier research indicated that plant MYB transcription factors regulate plant 

anthocyanin and phlobaphene biosynthesis (Dooner et al., 1991), trichome differentiation 

(Oppenheimer et al., 1991), epidermal cell shape determination (Noda et al., 1994), and 

gibberellin-regulated gene activation (Gubler et al., 1995). Shimizu et al. (2000) isolated 

and characterized a subfamily of GmMYB29 genes whose expression was found to be 

significantly upregulated upon UV-B irradiation. GmMZB29 consists of at least four 

closely related genes, which were classified into two groups based on their sequence 

similarity; groups A, and B. Expression of the group A members of the GmMYB29 

subfamily was found to reach its peak within two hours after the onset of UV-B 

irradiation when the accumulation of GmCUS mRNA was still increasing. Similar time 

lag in the induction of an activator and its target genes has been reported in some other 

cases. For example, the expression of Arabidopsis thatiana Lhcb3 (Light-harvesting 

chlorophyll a/b binding protein) is induced by light irradiation for 1 hour and its mRNA 

accumulation increased even under continuous light irradiation up to 12 hours, whereas in 

CC41, which encodes a putative transcription factor of Lhcb3, the peak of mRNA 

accumulation was reached after irradiation for 1 hour (Wang et al., 1997). 

Spraying plants with antioxidants prior to UV-B treatment can block the increase in 

pathogen-related transcripts and the decrease in photosynthetic transcripts (Surplus et 

al., 1998; Mackerness et al., 1999). This was an indication that ROS were involved in 

the pathway leading to changes in the level of these transcripts in response to UV-B 

radiation. To assess the role of ROS in the induction of HO-1 transcript levels, 

Yannarelli et al. (2006a) evaluated the action of AsA pre-treatment on the effects of 

UV-B. Consistent with the involvement of ROS in the regulation of HO-1 gene 

expression in response to UV-B, the increase in transcripts was blocked by 

pre-treatment with AsA. 

Measuring DNA damage in higher plants is important in assessing the impacts of 

increased UV, and in testing the relationship of productivity to DNA damage and repair 

(Bennett et al., 2001). We still do not have a complete understanding of the molecular 

bases of these responses, but they generally are the result of signal perception by 

receptor molecules and transduction of a response signal to the cellular machinery, a 

part of which may regulate gene expression. However, Xu et al. (2008b) did not detect 

protein effects involved in the signal transduction, because many of the proteins 

involved in the signal transduction occurred in too low abundance in crude extracts and 

membrane proteins were usually under-represented on 2-D PAGE gels. 

Also research at the mRNA level may not necessarily translate into the quantity and 

quality of the final gene products, i.e. the proteins. There is a loose correlation 

between mRNA and protein levels, especially for chloroplast genes, which are usually 

controlled at the post-transcriptional level (Mackerness et al., 1997). Moreover, many 

proteins undergo post-translational modifications (PTM) such as removal of signal 



Li et al.: Advances in crop responses to enhanced UV-B radiation  

- 352 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 14(3): 339-367. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/1403_339367 

 2016, ALÖKI Kft., Budapest, Hungary 

peptides, phosphorylation and glycosylation, which are extremely important for 

protein activities and subcellular localizations. Therefore, changes at the mRNA level 

alone may not adequately assess the response to UV-B, and it is necessary to study the 

effects of UV-B at the protein level. There has been only limited research on the 

effects of UV-B on proteins, and most of this research focused on a single protein, 

such as PR-1 (Green and Fluhr, 1995), glutathione reductase, ascorbate peroxidase, 

superoxide dismutase (Rao et al., 1996) or nitrite reductase (Migge et al., 1998), and 

heme oxygenase (Yannarelli et al., 2006b).  

Suchar and Robberecht (2014) developed a process-based model integrating the 

effects of UV-B radiation through epidermis, cellular DNA, and its consequences to the 

leaf expansion. They found that enhanced UV-B radiation induced DNA damage 

significantly delayed cell division, resulting in significant reductions in leaf growth and 

development. Leaf expansion was highly dependent on the number of cyclobutane 

pyrimidine dimers (CPD) present in the DNA, as a result of UV-B radiation dose, 

quantitative and qualitative absorptive properties of epidermal pigments, and repair 

mechanisms. Therefore, a thorough understanding the molecular basis of the UV-B 

response needs in depth research on proteome. 

Summary 

Based on available information in regard to the effects of the enhanced UV-B 

radiation on crops, the general responses of UV-B radiation could be proposed as in 

Figure 1 to illustrate the complexity of the interactions among factors. The adaptation 

or acclimation to photooxidative stress is multifactorial and many factors are involved 

in the overall defense strategy of the plant. A more indepth understanding of the 

generation and scavenging of AOS is needed before this relationship can be fully 

understood.  

Notwithstanding substantial new knowledge of molecular, cellular and organismal 

UV-B responses, there remains a clear gap in our understanding of the interactions 

between these organizational levels, and how they control plant architecture. It remains 

unproven whether UV-induced morphological changes have a protective function 

involving shading and decreased leaf penetration of UV-B, counterbalancing trade-offs 

such as decreased photosynthetic light capture and plant-competitive abilities. Future 

research will need to disentangle seemingly contradictory interactions occurring at the 

threshold UV dose where regulation and stress-induced morphogenesis overlap. 

Due to our lack in understanding of functional significance of natural variations in 

phenylpropanoid levels, there is a knowledge gap regarding the photocontrol of 

phenylpropanoid accumulation under field conditions, and the dynamics of specific 

compound accumulation, localization patterns and constitutive or background levels of 

UV-screening compounds warrant further studies. The mechanism of plant hormones 

including SA- and JA-induced resistance to UV-B radiation is still unclear. A thorough 

understanding the molecular basis of the UV-B response needs in depth research on 

proteome.  
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Figure 1. Interactions among factors and mechanism involved in preventing UV-B radiation 
damages 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Three specific researches are urgently needed, they are: (1) to differentiate the main 

UV-absorbing compounds and non-enzymatic antioxidants in contributing to defense 

system, (2) to investigate the specific role of phytohormones in response to UV-B 

radiation, and (3) to identify genetic consequences caused by full-season UV-B radiation 

and fill in the knowledge gap regarding the photocontrol mechanisms of UV-B to crops 

under field conditions. 
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