UNDERSTANDING G × E INTERACTION OF ELITE BASMATI RICE (ORYZA SATIVA L.) GENOTYPES UNDER NORTH INDIAN CONDITIONS USING STABILITY MODELS

JAIN, B. T.¹ – SARIAL, A. K.² – KAUSHIK, P.^{3*}

¹Department of Genetics & Plant Breeding, CCS Haryana Agriculture University, Hisar, Haryana 125001, India

²CSK Himachal Pradesh Krishi Vishvavidyala, Palampur, Himachal Pradesh 176062, India

³Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia 46022, Spain

*Corresponding author

e-mail: prakau@doctor.upv.es, prashantumri@gmail.com; phone: +34-96-387-7000

(Received 14th Jan 2019; accepted 6th Mar 2019)

Abstract. Information regarding the stability of genotypes is critical in expanding the adaptability of released genotypes. But, this information regarding the basmati (scented) rice genotypes cultivated under north Indian conditions are not well known. Therefore, here we have evaluated the twenty-two basmati rice genotypes for stability, based on important traits, and different production system. Genotypes were evaluated for two consecutive Kharif seasons under open field conditions in a randomized complete block design (RCBD). The genotypes were evaluated under four production systems namely, transplanted rice (TPR), system of rice intensification (SRI), direct seeded rice (DSR) in both settings, i.e. wet DSR (W) and dry DSR (D). The stability of genotypes was determined via Eberhart and Russell model, additive main effects and multiplicative interaction (AMMI), and genotype × environment interaction (GGE) biplot model. The stability and adaptability studied using Eberhart and Russell model, AMMI and GGE biplot identified Basmati-370 as the most stable genotype for biological weight; Pusa RH-10 for filled spikelet; CSR-30 for spikelet Number; and Traori Basmati for test grain weight. TPR was the most desirable test environment followed by SRI and DSR (W). Further, we have identified HKR 08-417 as the most suitable genotype for all of the production systems. Overall, this study provides information regarding stable basmati rice genotypes under the north Indian conditions.

Keywords: rice, $G \times E$, GGE, AMMI, stability model, Eberhart and Russell, SRI, DSR

Introduction

Rice (*Oryza sativa* L.) production is vital for the growing population (Zhang, 2007; Wu and Cheng, 2014). Although, rice is grown worldwide over an area of around 163.24 mha with a production of around 740.95 mt. besides its productivity is around 4.54 t/ha (Anonymous, 2016). In India rice is cultivated over 43.99 mha which results in the production of 109.69 mt., with a productivity of 2.49 t/ha (Anonymous, 2017). The productivity of rice in India is around half of the world average. This low productivity of rice in the Indian subcontinent is a result of several factors like less water availability, the frequent occurrence of droughts, weed competition, insect pest, and diseases (Silalertruksa et al., 2017; Sreekanth et al., 2017). The rice production areas in India are highly diverse with different production systems due to the area specific soil and climatic features (Singh et al., 1997). Moreover, the improper commercialization of high yielding varieties for non-conventional systems of rice production like system of rice intensification (SRI), direct

seeded rice (DSR) etc. leads to below average yields under non-conventional systems (Wanjari et al., 2006).

Based on the aroma, rice is divided into two categories namely, basmati (scented) and non-basmati (non-scented) type. Basmati rice is comprised of long slender grain, pleasant aroma and fluffy rice texture (Ashfaq, 2015; Hinge et al., 2016). The scented aroma of basmati varieties is only perceived when basmati rice varieties are grown on the northwestern foothills of Himalayas (Bhattacharjee et al., 2002; Jena and Grote, 2012). Still, most of the basmati genotypes are limited to the environment of their developed institutes, due to less in-depth study regarding the performance of elite verities under diverse environments from their developed institutes (Kamoshita et al., 2008). The researchers are primarily focused on configuring the input demand for the transplanted rice-based production system (Lin, 1994). The new production systems/non-conventional strategies like, SRI, DSR (are intended for the optimum yield per amount of input supplied (Jain et al., 2018).

Genotype \times Environment interactions (GEI) plays a pivotal role in the positioning of genotypes from their native to non-native environment, which further hampers the plant breeding advancement (Pham and Kang, 1988). A genotype is termed as stable if it performs statically across different environments. Whereas, the theory of biological stability consider the concept of less variance for yield and yield related characters across unrelated environments (Becker and Leon's, 1988). Rice breeders and agronomists give little attention to biological stability concept (Xu, 2016).

A number of stability analyses models are used to determine the contribution of $G \times E$ interaction (GEI), also, to identify genotypes which perform superior under several environments (Génard et al., 2017; Malosetti et al., 2013). Stability model is defined in terms of mean value, regression coefficient, deviation from the regression, and principal component analysis (PCA) (Bernardo, 2002). Stability models like Finlay and Wilkinson (1963), and Eberhart and Russell (1966) are based on two parameter regression coefficient (bi), and deviation from regression (S²di). Whereas, the additive main effects and multiplicative interaction (AMMI) model is a combination of the main effect due to analysis of variance and their interactions (GEI) (Gauch, 1992).

Yan et al. (2000) created a biplot strategy known as GGE biplot which graphically indicates the genotype (G) primary effects and genotype × environment interaction (GGE). The G and GE are the two fundamental source of variation for genotype evolution under diverse environment. The GGE biplot analysis represents the G+GE of different environment records acquired by plotting the two (or more) PCA score of G × E interaction. The GGE biplot analysis allows the analysis of many characteristics of genotypes and environments (Samonte et al., 2005). Selection and identification of stable and high yielding genotypes over the different environments have been a continuous task to rice breeders (Balestre et al., 2010). Therefore, in our study, we have compared the Eberhart and Russell methodology, AMMI biplot, and GGE biplot analysis of the twenty-two popular basmati rice genotypes under north Indian conditions. Further, these approaches are applied under four different production systems transplanted rice (TPR), SRI, DSR (W) and DSR (D).

Materials and methods

Plant material and experiment layout

Experimental fields were settled at Regional Research Station, Kaul, India (29.98° N latitude and 79.66° E longitude) (*Fig. 1*). Field trials were conducted over two Kharif (July

to October) seasons in 2014-2015 and 2015-2016 respectively. During both of the years, the nursery was sown in June, for both TPR and SRI. After that, the seedlings were field transplanted in July for TPR and SRI. Whereas, the direct sowing of DSR (D) and DSR (W) was performed in June. Plants were harvested in the month of October for data analysis. The weather during the entire crop period is presented in *Figure 2*. The soil was analysed as a composite sample from the top 0-15 cm (Bandyopadhyay et al., 2012). The soil was sandy loam with the with different percentage of sand (81.4%), slit (7.3%), and clay (11.3%). All plant production related practices were followed based on the package of practices for rice cultivation.

The experimental materials comprised of popular basmati rice genotypes (*Table 1*). These genotypes were laid out in a randomized complete block design (RCBD) with three replications, using four production systems namely, TPR, SRI, DSR (W) and DSR (D) (*Table 2*). Each experimental plot consisted of five rows of 2 m long with 0.20 m row spacing (*Fig. 3*).

Figure 1. Location and coordinates of the experimental site in India

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 17(3):5863-5885. http://www.aloki.hu • ISSN 1589 1623 (Print) • ISSN 1785 0037 (Online) DOI: http://dx.doi.org/10.15666/aeer/1703_58635885 © 2019, ALÖKI Kft., Budapest, Hungary

Jain et al.: Understanding G × E interaction of elite basmati rice (*Oryza sativa* L.) genotypes under north Indian conditions using stability models - 5866 -

Figure 2. Temperature (°C), relative humidity (%), sunshine (h), and rainfall (mm) during first year and second year of the entire crop season

Code	Genotypes
G1`	Pusa Basmati 1121
G2	Pusa Basmati 1509
G3	Pusa Sugandh 2
G4	Pusa Sugandh 3
G5	Pusa Sugandh 5
G6	Pusa Basmati 6
G7	Pusa Basmati 1
G8	Improved Pusa Basmati 1
G9	HKR 98-476
G10	HKR 03-408
G11	HKR 06-434
G12	HKR 06-443
G13	HKR 06-487
G14	HKR 08-417
G15	HKR 08-425
G16	Haryana Mahek-1
G17	Haryana Basmati-1
G18	Traori Basmati
G19	Super Basmati
G20	CSR-30
G21	Basmati-370
G22	Pusa RH-10

Table 1. List of basmati rice genotypes used in the study

	-	
Environment	2014	2015
DSR (D)	E1	<i>E2</i>
DSR (W)	E3	E4
SRI	E5	*
TPR	E6	<i>E7</i>

Table 2. Description of environments

Transplanted rice (TPR), system of rice intensification (SRI), direct seeded rice (DSR) in both conditions, i.e. wet (W) and dry (D) (

*Filled damage during flood, so data was not included in the analysis

Figure 3. The four production systems used for the characterization of basmati rice genotypes. Transplanted rice (TPR), system of rice intensification (SRI), direct seeded rice wet (DSR (W)), and direct seeded rice dry (DSR (D))

Characterization and data analysis

In total seven characters were studied as the mean of five randomly chosen plants per plot. Biological weight is measured as the weight of plant biomass. The biological weight (g) per plant was recorded after harvesting and drying of mature plants. Whereas, the harvest index was determined as the ratio of grain yield/biological yield \times 100. Test grain weight (g) was determined from the random sample of 1000 filled grains for each replication. Whereas, the number of spikelet per panicle were determined from a random sample of twenty panicles after harvesting. The percent of filled spikelet was

estimated as the percentage of grain filled spikelet to the total number of spikelet. While the days to 50% flowering were recorded based on the date of sowing to 50% flowering on a plot basis. Similarly, days to 75% maturity were recorded from the date of sowing until the day when a minimum 75% grains per panicle showed maturity.

The data analysis was performed using the software package PBTools version 1.4 (http://bbi.irri.org/products) and R Statistics (R Core Team, 2017). Unweighted Pair Group Method with Arithmetic Mean (UPGMA) method of hierarchical clustering was applied to the twenty-two genotypes in order to visualize how genotypes are related to each other based on all of the studied descriptors. The AMMI model (Gauch, 1988) is a combination of Additive (ANOVA) and multiplicative interaction (Principal component analysis). The Genotype \times Environment interaction was evaluated by considering the first two PCA. The statistical model can be represented as:

$$Y_{ij} = \mu + g_i + e_j + \Sigma \lambda_n \alpha_{in} \gamma_{jn} + \theta_{ij} \qquad (Eq.1)$$

where:

Y_{ij}: mean yield of ith genotype in the jth environment;

μ: general mean;

g_i: ith genotypic effect;

e_j: jth location effect.

 λ_n : eigenvalue of the Principal Component Axis n;

 α_{in} : and γ_{jn} are the ith genotype, jth environment Principle component analysis (PCA) scores for the PCA axis n;

 θ_{ij} : residual n is the number of PCA axes retained in the model.

Whereas GGE biplots are a combination of both G (Genotype) linear effect and $G \times E$ interaction and it is based on sites regression linear, bilinear model (Kang, 1993; Cornelius et al., 1996; Crossa and Cornelius, 1997; Crossa et al., 2002).

Results

Genotypic performance of different traits

A diverse range of variation in the means was detected for yield and yield-related traits for all of the 22 basmati rice genotype in a different production system. During the two seasons; wide-ranging genotypic fluctuation or variation was detected and ranged for biological weight (32.49 to 44.26); harvest Index (%) (27.54 to 41.17); test grain weight (19.62 to 29.95); number of Spikelet (57.49 to 109.71); filled spikelet (%) (73.06 to 87.62); 50% flowering (86.00 to 108.40); 75% maturity (107.60 to 137.60) among different genotype under study as shown in Table 3. Considering the two season average mean, genotypes G22 recorded the highest number of spikelet per plant, whereas, genotype G16 recorded the highest biological weight per plant. Genotype G2 was short duration with lowest unfilled grain and highest test grain weight in all the production system (Table 3). Further, using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) technique the clustering results of the twenty-two basmati rice genotypes are presented in Figure 4. More related genotypes were clustered together. Genotype G2 clustered apart from rest of the genotypes. Whereas, seven genotypes clustered together, while, the remaining fourteen genotypes were together (Fig. 4).

Genotype	Biological weight (g)	Harvest index (%)	50 flowering (%)	75 maturity (%)	Filled spikelet (%)	Test grain weight (g)	No. of spikelet
G1	43.76	32.32	101.60	128.30	75.41	27.46	62.05
G2	32.49	39.54	86.00	107.60	85.22	29.95	66.91
G3	36.63	36.66	89.50	113.60	81.39	27.45	91.05
G4	36.85	33.97	99.00	120.70	77.71	22.94	88.10
G5	35.86	35.43	99.80	119.60	79.21	25.44	92.38
G6	38.31	34.85	110.30	135.90	73.06	21.85	80.48
G7	35.52	34.84	107.50	136.80	77.42	21.85	89.10
G8	33.94	36.51	107.60	136.60	76.15	21.19	87.41
G9	39.55	30.16	107.40	135.40	77.21	21.50	57.50
G10	41.29	28.20	109.10	136.20	81.59	21.16	64.79
G11	44.11	27.55	111.40	137.00	82.17	22.63	66.00
G12	39.51	30.33	102.00	130.00	78.84	26.29	53.95
G13	39.14	30.02	108.40	134.10	84.26	19.62	84.95
G14	37.21	41.17	98.80	127.60	86.40	21.90	72.59
G15	40.14	37.31	99.40	129.10	84.67	21.52	81.10
G16	44.27	27.49	114.00	137.60	82.14	23.58	76.33
G17	36.63	34.13	101.50	127.90	79.42	22.61	83.77
G18	40.14	33.59	103.50	128.60	87.63	23.63	56.19
G19	38.88	32.71	96.70	127.80	82.54	21.44	77.58
G20	36.97	26.99	105.60	132.80	84.75	22.82	51.95
G21	43.83	29.20	101.00	130.10	83.23	22.10	81.24
G22	38.11	40.61	92.30	116.90	73.32	24.75	109.71
Mean	38.78	33.34	102.38	128.65	80.62	23.35	76.14
Standard error	3.19	2.18	1.70	2.30	2.20	0.95	4.99

Table 3. Mean performance of genotypes for the studied characters over a period of two years

Figure 4. Clustering dendrogram of twenty-two basmati rice genotypes based on the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) clustering method with on log-normalized descriptors values. The cophenetic correlation coefficient of clustering is 0.8

Pooled analysis and stability analysis

Interpretations on the yield-related traits for two-year data were then subjected to pooled analyses by using Eberhart and Russel (1966), Additive Main Effect and multiplicative interaction (Gauch and Zobel, 1989) and GGE Biplot (Yan and Kang, 2003). In the analysis, the environment defined by every arrangement of location or Kharif season with the production system. First Analysis of variance was conducted for each location (environment) then combined analysis of two-year data was subjected to stability analysis using PB tools and R software. The pooled analysis results showed that the genotypic and environmental variances were significant (p < 0.05) for all the traits. Similarly, the mean sum of squares due to $G \times E$ interaction was significant for all of the seven traits studied. Furthermore, the partitioning of the combined environment, and genotype \times environment variance into linear and non-linear components showed that environment linear and combined deviation was significant given in *Table 4*.

Table 4. Pooled analysis of variance over different environments for different traits in rice (Eberhart and Russell, 1966 model)

Source of variations	DF	Biological weight (g)	Harvest index (%)	50 Flowering (%)	75 Maturity (%)	Filled spikelet (%)	Test grain weight (g)	No. of spikelets
Rep within Env.	14	3.5	1.81	0.81	0.5	8.23	0.53	13.32
Varieties	21	73.87*	127.58**	354.36**	480.49**	120.46**	45.29**	1536.44**
Env.+ (Var.* Env.)	132	249.73***	76.312**	32.56**	52.85**	63.66**	8.37*	435.22**
Environments	6	4600.33***	937.039**	325.86**	442.44**	679.10**	67.58**	5072.60**
Var.* Env.	126	42.56**	35.32*	18.59*	34.30*	34.35*	5.55*	214.39*
Environments (Lin.)	1	27601.99***	5622.23**	1955.21**	2654.67**	4074.60**	405.52**	30435.60**
Var.* Env.(Lin.)	21	63.49*	62.66**	20.33	44.27	54.03*	4.83015871	502.62**
Pooled Deviation	110	36.63***	28.50**	17.41**	30.84**	29.03**	5.44**	149.62**
Pooled Error	294	5.73	2.31	1.32	1.07	6.67	0.69	14.74
Total	153	225.59	83.34	76.72	111.55	71.45	13.44	586.37

*, **Significant at 5% and 1% respectively

The stability model proposed by Eberhart and Russell (1966) was adopted to analyse the data over different environments and in this model is the most popular technique of studying Genotype × Environment interaction and genotypic stability. It used two parameters (bi and S⁻²di) to define stability. S⁻²di; is primarily used to rank the relative stability of cultivars. The indication is that bi may be utilized to depict the standard response to the goodness of environmental conditions though S-2di measures the predictability. According to this model, a stable variety is one that has a high mean (Xi), unit regression coefficient (bi=l) and the deviation from regression as small as possible $(S^{-2}di = 0)$. The stability analysis revealed the genotypes in case of with significant regression coefficient (bi) and non-significant deviation from the regression (S⁻²di) Genotype G21 (50% flowering) and G17 (filled spikelet (%)) exhibited non-significant S⁻²di, regression coefficient significantly greater than one and mean higher than the population mean was found suitable for a better environment (E6 and E5). Genotype G2 in biological weight, G18 and G21 in a filled spikelet (%), G2 and G12 in Number of spikelet with regression coefficient significantly less than one and non-significant deviation from regression and mean higher than the population mean was identified suitable for unfavourable environments E1, E2, E3, E4. Genotype G9 and G19 were

found stable for filled Spikelet (%) trait for all the environments that have high mean (Xi), unit regression coefficient (bi=l) and the deviation from regression as small as possible ($S^{-2}di = 0$) given in *Table 5*.

Biological Harvest 50 flowering 75 maturity Filled Test grain No. of Parameter Genotypes weight (g) spikelets index (%) pikelet (%) (%) (%) weight (g) Mean 43.762 32.323 101.571 128.286 75.414 27.462 62.048 0.830 G1 0.666 0.229 hi 1 22 1 273 1 0 2 2 1 1 2 3 S²di 29.395 25.010 5.55 6.638 9.777 0.579 21.705 86.000 Mean 32.490 39.535 107.619 85.224 29.952 66.905 G2 0.555 0.898 0.837 -0.019 -0.136 0.316 0.709 bi -0.537 S²di 49.719 39.809 2.062 9.969 4.788 13.008 89.476 113.571 27.452 91.048 Mean 36.633 36 658 81.386 G3 0.905 1.019 0.863 0.271 -0.256 0.657 1.399 bi S²di 12.465 29.494 6.785 51.342 22.906 106.416 -0.115 36.848 33.966 99.000 120.714 77.714 22.943 88.095 Mean G4 bi 0.800 0.814 1.827 0.010 1.351 0.001 1.462 26.09** 20.80** S²di 34.35** 83.90** 163.25** 6.35** 202.05** Mean 35.857 35.430 99.762 119.571 79.205 25.438 92.381 G5 bi 0.563 0.077 1.448 0.542 0.496 0.927 1.176 64.73** 41.67** S²di 33.21** 67.98** 4.772 4.63** 103.31** 38.314 34.851 110.33 135.857 73.062 21.848 80.476 Mean G6 1.177 1.095 1.545 0.962 0.773 1.079 1.95*bi S²di 1.449 65.10** 6.74** 7.94** 63.60** 7.64** 88.68** Mean 35.521 34.839 107.524 136.762 77.424 21.848 89.095 G7 bi 0.891 1.004 1.373 1.293 1.498 1.517 1.76* 13.74** 5.77** 5.30** 96.96** 3.12* 11.95** 22.20** S²di Mean 33.943 36.507 107.571 136.619 76.148 21.186 87.410 G8 0.95* 0.769 1.675 1.411 1.545 0.898 2.08*bi 5.19** S²di 5.064 25.12** 23.41** 42.22** 12.85** 152.05** Mean 39.552 30.159 107.381 135.381 77.214 21.495 57.495 G9 0.940 1.119 1.98* 1.368 1.85* 1.04*0.649 hi 31.48** 4.035** 7.72** S²di 33.88** 5.894 6.11** 87.83** Mean 41.286 28.195 109.095 136.238 81.586 21.162 64.790 G10 1.276 0.956 0.949 1.61* 0.765 1.22* 0.42* bi S²di 53.30** 23.55** 3.42** 2.48** 6.991 0.352 23.62* 44.114 27.547 111.380 137.048 Mean 82.167 22.633 66,000 G11 bi 1.393 0.844 0.710 1.456 0.887 1.565 0.639 S²di 84.97** 26.12** 0.019 8.31** 14.27** 10.01** 67.03** Mean 39.514 30.332 102.048 129.952 78.843 26.286 53.952 G12 0.910 0.43** 1.237 0.971 0.800 1.838 0.722 bi 9.04** 26.35** S²di 35.55** 1.504 44.09** 0.86*2.899 Mean 39.143 30.022 108.381 134.143 84.257 19.624 84.952 G13 0.863 0.424 1.312 1.465 bi 1.126 1.618 1.26* S²di 25.75** 6.71** 15.26** 31.78** 4.260 0.045 730.35** 37.210 41.173 98.810 127.571 86.395 21.895 72.590 Mean G14 bi 1.067 0.585 0.745 1.727 0.910 1.767 0.556 S²di 19.43** 11.83** 35.85** 29.08** 13.32* 1.34* 143.06** Mean 40.143 37.314 99.381 129.095 84.667 21.524 81.095 G15 0.547 1.054 0.40* 1.324 0.835 bi 1.18* 1.283 3.39* S²di 2.343 29.93** 2.51* 6.654 0.824 194.79** 44.267 27.488 114.048 76.333 Mean 137.571 82.138 23.576 G16 1.356 1.482 0.818* 1.728 1.403 0.651 0.346 bi 47.98** 29.54** 38.51** 12.31* 6.02** S²di 1.440 90.42** 22.614 34.130 101.476 127.905 79.419 83.767 Mean 36.631 G17 0.929 1.252 1.639 -0.1501.38* 2.220 1.839 hi 12.94** S²di 21.85** 12.24** 81.51** 4.067 8.47** 287.84**

Table 5. Stability parameters for yield contributing traits of rice genotypes tested over different environments

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 17(3):5863-5885. http://www.aloki.hu • ISSN 1589 1623 (Print) • ISSN 1785 0037 (Online) DOI: http://dx.doi.org/10.15666/aeer/1703_58635885 © 2019, ALÖKI Kft., Budapest, Hungary

Jain et al.: Understanding G × E interaction of elite basmati rice (*Oryza sativa* L.) genotypes under north Indian conditions using stability models - 5872 -

G18	Mean	40.143	33.592	103.476	128.571	87.629	23.629	56.190
	bi	1.032	0.111	0.760	1.049	0.81*	0.846	0.503
	S ² di	25.98**	89.14**	5.79**	18.90**	-1.576	3.14**	76.25**
G19	Mean	38.876	32.708	96.667	127.762	82.537	21.438	77.581
	bi	0.959	1.58*	-0.178	1.450	1.01*	0.842	1.304
	S ² di	8.91*	8.95**	65.42**	26.44**	5.813	8.94**	162.68**
G20	Mean	36.971	26.992	105.571	132.810	84.752	22.819	51.952
	bi	1.163	1.74*	0.555	1.079	1.186	1.340	0.035*
	S ² di	68.91**	16.08**	5.47**	27.05**	12.07*	6.64**	170.01**
G21	Mean	43.829	29.196	101.048	130.143	83.233	22.095	81.238
	bi	0.839	0.708	1.18*	0.787	0.83*	0.965	0.874
	S ² di	96.98**	14.17**	0.789	4.49**	-1.604	7.06**	32.28*
G22	Mean	38.114	40.610	92.333	116.905	73.324	24.752	109.714
	bi	0.828	0.149	1.104	0.439	1.796	0.270	1.304
	S ² di	35.11**	41.67**	6.27**	84.99**	25.17**	2.65**	115.49**

*, **Significant at 5% and 1% respectively

Genotypes or general genotypic adaptation

GGE and AMMI biplots described stability across genotypes or general genotypic adaptation. Comparative position of diverse genotypes on the biplots is based on its projection onto the O-axis in AMMI Biplot and GGE biplot. Biplots can identify GEI effects on each trait which contribute towards yield. AMMI1 biplot interpreted results by main effect and IPCA1 of both genotype and environment revealed that genotypic differences were important in term of direction and magnitude along both axis (X axis and Y axis). AMMI biplot represent that shift along the X-axis reflected changes in main effects, however, shift along the Y-axis reflected differences in interaction effects and adaptation of a genotype to specific environment showed by high PCA score, IPCA scores nearly to zero gave information about stable genotype in different environments. The AMMI biplot analysis is provided in *Table 6*.

Source of variations	Biological weight (g)	+SS (%)	Harvest index (%)	SS (%)	50 Flowering (%)	SS (%)	75 maturity (%)	SS (%)	Filled spikelet (%)	SS (%)	Test grain weight (g)	SS (%)	No. of spikelets	SS (%)
Trials	225.60		83.35		76.73		111.55		71.46		13.44		586.37	
Genotypes	73.87*	4.49	127.58*	21.01	354.36*	63.39	480.50*	59.12	120.46*	23.14	45.30*	46.24	1536.45*	35.96
Environments	4600.33*	79.97	937.02*	44.09	325.87*	16.65	442.45*	15.55	679.10*	37.27	67.59*	19.71	5072.60*	33.92
G × E interaction	42.56*	15.54	35.33*	34.90	18.59*	19.96	34.30*	25.32	34.36*	39.59	5.56*	34.04	214.40*	30.11
PCA I	81.72*	39.62	69.32*	40.49	69.68*	77.33	92.63*	55.72	60.61*	36.40	8.61*	31.96	423.70*	40.78
PCA II	45.87*	20.53	40.67*	21.93	14.60*	14.96	66.63*	37.00	41.36*	22.93	7.00*	24.00	352.16*	31.29
PCA III	40.34*	16.55	36.31*	17.95	3.66*	3.44	7.61*	3.88	39.00*	19.82	5.64*	17.72	148.17*	12.07
PCA IV	27.33*	10.19	19.02*	8.55	2.59*	2.21	4.01*	1.86	24.37*	11.26	4.85*	13.84	88.33*	6.54
PCA V	25.72*	8.63	16.19*	6.55	1.57*	1.21	2.44*	1.02	13.37*	5.56	3.45*	8.87	90.64*	6.04
Residual	15.00	4.48	12.60	4.53	1.24	0.85	1.44	0.53	10.90	4.03	1.58	3.60	55.52	3.29
Pooled residual	23.14*		22.01*		18.59*		34.30*		34.36*		5.56*		214.40*	
Error	5.64		2.30		1.30		1.05		6.74		0.69		14.68	
Total	78.64		29.20		26.33		37.72		28.22		4.92		204.42	

Table 6. AMMI analysis for different traits in rice across different production system

*, **Significant at 5% and 1%, respectively. *Mean sum of squares (SS)

AMMI analysis (*Figs. 5, 6, 7, 8* and *9*) showed that genotype G22 for filled spikelet (%); G20 for number of spikelets; G18 for test grain weight; G8 for Harvest index.

Environment E5, E6 were more responsive for the traits Biological weight, number of Spikelets, Test Grain Weight, filled Spikelet (%) and environment E7 was responsive for traits filled Spikelet (%), Test grain weight, Harvest index. From the AMMI biplot was concluded that environment interaction was extremely diverse and entirely the four Production systems were extremely interactive for most of the yield-related traits. Environment E5, E6 seemed to be a favourable environment for all the yield-related traits; E7, E2 for filled spikelet (%), Test Grain Weight, Harvest Index. Environment E1 and E3 unfavourable for Harvest Index, Test grain weight, number of spikelet and filled spikelet (%).

Specific genotypic adaptation

Specific genotypic evaluation centred on two GGE biplots "which-won-where pattern" biplot and adaptation biplot displayed specific genotypic adaptation to limited environment condition or the adaptability of genotypes for each environment. The biplot *Figure 10* represents a polygon where some of the genotypes were placed on the crests, while the rest were surrounded by the polygon. As the genotypes placed on the peak had the longest detachment from the biplot origin and they were expected to be the most responsive. The genotypes on the crests could be called the ideal/vertex genotype. In the present study, the genotypes G15 in E1 and E5 are the vertex genotype, which had the highest test grain weight. The genotype G20 is only apex genotype for environment E4 and Genotype G14 for E2 and E6 environment. None of the environments fell in the sectors with genotypes G1, G7 and G3 that these genotypes were not appropriate for growing in these environments.

Figure 5. AMMI1 biplot for biological weight (g)

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 17(3):5863-5885. http://www.aloki.hu • ISSN 1589 1623 (Print) • ISSN 1785 0037 (Online) DOI: http://dx.doi.org/10.15666/aeer/1703_58635885 © 2019, ALÖKI Kft., Budapest, Hungary Jain et al.: Understanding G × E interaction of elite basmati rice (*Oryza sativa* L.) genotypes under north Indian conditions using stability models - 5874 -

Figure 6. AMMI1 biplot for filled spikelet (%)

Figure 7. AMMI1 biplot for number of spikelets

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 17(3):5863-5885. http://www.aloki.hu • ISSN 1589 1623 (Print) • ISSN 1785 0037 (Online) DOI: http://dx.doi.org/10.15666/aeer/1703_58635885 © 2019, ALÖKI Kft., Budapest, Hungary Jain et al.: Understanding G × E interaction of elite basmati rice (*Oryza sativa* L.) genotypes under north Indian conditions using stability models - 5875 -

Figure 8. AMMI1 biplot for test grain weight (g)

Figure 9. AMMI1 biplot for harvest index (%)

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 17(3):5863-5885. http://www.aloki.hu • ISSN 1589 1623 (Print) • ISSN 1785 0037 (Online) DOI: http://dx.doi.org/10.15666/aeer/1703_58635885 © 2019, ALÖKI Kft., Budapest, Hungary

Figure10. Polygon views of the GGE biplot based on symmetrical scaling for "which-wonwhere" pattern of rice genotypes in three environments "which-won-where pattern biplot test grain weight (g)"

In case of biological weight (*Fig. 11*) Vertex genotypes are G4, G5, G10 and G1 at E6, E5, E7 and E1 respectively. In case filled spikelet (*Fig. 12*) Vertex genotypes are G22, G2, G12, G18 and G15 at E2, E4, E7, E1 and E3, E5 respectively.

In *Figure 13* average tester coordinate (ATC X-axis) or the performance line passes through the biplot origin with an arrow indicating the positive end of the axis. The average biological Weight of the genotypes is estimated by the projections of their markers to the ATC X-axis. Genotypes G2 and G5 had the highest biological Weight and genotype G15 had the poorest biological Weight. Mean biological weight of the genotypes were in the following order: G2 > G5 > G14 > G1 > G10 > G9 > G11 > G22 >G2 > G16 (*Fig. 13*). The performance of genotypes G10 and G1 were the most variables (least stable), whereas genotypes G4, G9 and G22 were highly stable with high biological weight.

The discriminating power vs representativeness view of the GGE biplot as shown in *Figure 14* indicated that environments E1 and E5 with the most extended projection from the biplot origin were found large discriminating power of the genotypes (i.e., provided information regarding differences among genotypes). On the other hand, E2 and E3 with its shortest vector from the biplot origin was found less discriminating of the different genotypes. Environments E2, E3, E4 and E6 were found to be more representative of other test environments because they have smaller angles with the AEAs (*Fig. 14*). E6 was therefore identified as an ideal environment that has both discriminating abilities of

the genotypes and representative of the other test environments. Therefore, environment E6 can be used to effectively select superior rice genotypes that can perform consistently across environments.

Ranking genotypes relative to the ideal genotypes

An ideal genotype is one that has both high mean yield and high stability. The centre of the concentric circles (*Fig. 15*) represents the position of an ideal genotype, which is defined by a projection onto the mean-environment axis that equals the longest vector of the genotypes that had above-average mean biological weight and by a zero projection onto the perpendicular line (zero variability across environments). Therefore, genotypes G21 and G16 which fell into the centre of concentric circles, were ideal genotypes in terms of higher yield ability and stability, compared with the rest of the genotypes. In addition G6, G7, G22, G9, G2 located on the next concentric circle, may be regarded as desirable genotypes.

Ranking environment relative to the ideal environment

The GGE biplot way of measuring representativeness is to define an average environment and use it as a reference or benchmark. The average environment is indicated by small circle (*Fig. 16*). The ideal environment, represented by the small circle with an arrow pointing to it, is the most discriminating of genotypes and yet representativeness of the other tests environments. Therefore, E1, E2 and E3 were the most desirable test environment followed by E7.

Figure 11. Polygon views of the GGE biplot based on symmetrical scaling for "which-wonwhere" pattern of rice genotypes in three environments "which-won-where biplot biological weight (g)"

Figure 12. Polygon views of the GGE biplot based on symmetrical scaling for "which-wonwhere" pattern of rice genotypes in three environments "which-won-where biplot filled spikelet (%)"

Figure 13. Polygon view biological weight (g)

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 17(3):5863-5885. http://www.aloki.hu • ISSN 1589 1623 (Print) • ISSN 1785 0037 (Online) DOI: http://dx.doi.org/10.15666/aeer/1703_58635885 © 2019, ALÖKI Kft., Budapest, Hungary

Figure 14. GGE biplot for biological weight (*g*)

Figure 15. Ranking genotypes relative to the ideal genotypes

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 17(3):5863-5885. http://www.aloki.hu • ISSN 1589 1623 (Print) • ISSN 1785 0037 (Online) DOI: http://dx.doi.org/10.15666/aeer/1703_58635885 © 2019, ALÖKI Kft., Budapest, Hungary

Figure 16. Ranking environment relative to the ideal environment

Discussion

Due to the Cultivation of rice under several agroecological zones and in different production systems the evaluation of rice genotypes for stability and adaptability is of prime importance (Bose et al., 2012). The changes in environmental conditions significantly affect rice production (Bose et al., 2014). Therefore, here we have identified stable rice genotype to sustain with innovative production systems like the system of rice intensification, and direct seeded rice using stability models. Previously, researchers have used GGE biplot analysis mainly for assessment of varietal stability cultivar evaluation and mega-environment evaluation (Kang, 1993; Yan and Hunt, 2001; Yan and Kang, 2003; Dehghani et al., 2006; Navabi et al., 2006; Blanche et al., 2007; Ding et al., 2007; Jalata, 2011; Mohammadi et al., 2012; Rakshit et al., 2012; Amiri et al., 2015). The simultaneous selection for stability and high mean results in the selection of better genotypes with non-significant stability variance, and it enhances the quality of selection (Nassir, 2013). Pooled analysis study stipulates that a significant basis of variation in the basmati rice genotypes was due to genotype by environment interaction. In the present study, two-year data under four production system of rice was primarily subjected to stability analysis of the traits.

The GGE and AMMI1 biplots recognised Genotype G21 most stable genotype for biological weight; G22 for Filled spikelet (%); G20 for Number of spikelets; G18 for Test Grain weight; G8 for Harvest index was identified as most stable genotypes. Similarly, it has been proved that for multi-environment trails both GGE and AMMI biplots were important for judging stable and adaptable genotypes (Hagos and Abay,

2013; Stojaković et al., 2010; Mitrovic et al., 2012; Rad et al., 2013). Genotypes G21 and G16 were ideal genotypes for biological weight. Further, E1, E2 and E3 were the top three most desirable test environments. Whereas, the GGE biplot analysis has identified E3 as the ideal environment having a long vector length (discriminating ability) and a small angle (representativeness) and G18 as a superior genotype across environments. Similar research finding by Khalil et al. (2011).

This study uncovered that the GGE biplot hence clarified better Genotype + Genotype-Environment interaction than the AMMI1 biplot so that better precise explanation of the GGE of the basmati rice genotype in a diverse production system. This might likely be due to the truth that in spite of the fact that, the AMMI1 biplot (Zobel et al., 1988) has been demonstrated to be exceptionally effective in identifying significant sources of variation of Genotype × Environment interaction effects and has moreover been pronounced as either superior or equal GGE biplot analysis (Gauch, 2006), but it isn't capable to successfully show the virtual execution of each genotype in each environment i.e., does not have the foremost critical property of a true biplot. As a result, the performance of a given genotype in a given environment cannot be precisely visualized even in case it completely shows the data.

Also, Yan et al. (2007) concluded that the GGE biplot is predominant in the AMMI1 biplot in mega-environment analysis and genotype assessment, as it clarifies more G+GE and pinpointed that, the AMMI1 biplot is way better seen as a tool for displaying conclusions instead of as a tool for finding which-won-where designs. Contrastingly, the GGE biplot was criticised by Ebdon and Gauch (2002) and Gauch (2006) for not being able to uncover which-won-where designs in case more than two PCs are required to surmise the information.

Conclusion

We showed the significance of Genotype × Environment interaction by evaluating the genotypic potential of twenty-two basmati rice genotypes using stability models. Basmati rice genotypes were compared for their stability under different production systems (both conventional and non-conventional) for yield-related traits. Results from the analysis with Eberhart and Russell model, AMMI and GGE biplots showed Genotype G21 as the most stable genotype for biological weight; G22 for filled spikelet (%); G20 for number of spikelets; G18 for test grain weight; and G8 for harvest index. Whereas, among the different environments E7 was the most desirable test environment followed by E5 and E4. Overall, a summary list of best genotypes under all of the four production system is provided in *Table 7*. Further, the HKR 08-417 (G14) was determined to be stable under all of the production systems.

Production system	Genotype			
	HKR 98-476 (G9)			
TPR	Haryana Mehak-1 (G16)			
	HKR 08-417 (G14)			
	HKR 98-476 (G9)			
SRI	Imp Pusa Basmati 1,(G8)			
	HKR 08-417 (G14)			

Table 7. List of best three genotypes for all of the four production system

	Imp Pusa Basmati1, (G8)
DSR (W)	Haryana Mehak-1 (G16)
	HKR 08-417 (G14)
	Super Basmati (G19)
DSR (D)	HKR 06-487 (G13)
	HKR 08-417 (G14)

REFERENCES

- [1] Amiri, R., Bahraminejad, S., Sasani, S., Jalali-Honarmand, S., Fakhri, R. (2015): Bread wheat genetic variation for grain's protein, iron and zinc concentrations as uptake by their genetic ability. European Journal of Agronomy 67: 20–26.
- [2] Anonymous (2016): Food and Agriculture Organisation of the United Nations. http://www.FAOstat.fao.org.com.
- [3] Anonymous (2017): Agricultural Statistics. Directorate of Economics and Statistics, Department of Agriculture and Cooperation, Ministry of Agriculture, GOI, New Delhi, pp. 99-100.
- [4] Ashfaq, M. (2015): Basmati–rice a class apart (a review). Rice Research: Open Access 03(04). doi:10.4172/2375-4338.1000156.
- [5] Balestre, M., Santos, V. B., Soares, A. A., Reis, M. S. (2010): Stability and adaptability of upland rice genotypes. Crop Breeding and Applied Biotechnology 10(4): 357–363.
- [6] Bandyopadhyay, K., Aggarwal, P., Chakraborty, D., Pradhan, S., Narayan Garg, R., Singh, R. (2012): Practical Manual on Measurement of Soil Physical Properties Practical.
 Indian Agricultural Research Institute, New Delhi, India, pp. 8–25.
- [7] Becker, H. C., Leon, J. (1988): Stability analysis in plant breeding. Plant Breeding 101: 1–23.
- [8] Bernardo, R. (2002): Quantitative Traits in Plants. Stemma Press, Bowsens Lanne, Woodbury, MN.
- [9] Bhattacharjee, P., Singhal, R. S., Kulkarni, P. R. (2002): Basmati rice: a review. International Journal of Food Science & Technology 37(1): 1–12.
- [10] Blanche, S. B., Myers, G. O., Kang, M. S. (2007): GGE biplots and traditional stability measures for interpreting genotype by environment interactions. – Journal of Crop Improvement 20: 123–135.
- [11] Bose, L. K., Nagaraju, M., Singh, O. N. (2012): Genotype × Environment interaction and stability analysis of low land rice genotypes. Journal of Agriculture Science 57: 1–8.
- [12] Bose, L. K., Jambhulkar, N. N., Singh, O. N. (2014): Additive main effects and multiplicative interaction (AMMI) analysis of grain yield stability in early duration rice. – Journal of Animal and Plant Science 24: 1885–1897.
- [13] Cornelius, P. L., Crossa, L., Seyedsadr, M. S. (1996): Statistical Test and Estimators of Multiplicative Models for Genotype-by-Environment Interaction. – In: Kang, M. S., Gauch, H. G. (eds.) Genotype-by-Environment Interaction. CRC Press, Boca Raton, FL, pp. 199–234.
- [14] Crossa, J., Cornelius, P. L. (1997): Sites regression and shifted multiplicative model clustering of cultivar trials sites under heterogeneity of variances. – Crop Science 37: 406–415.
- [15] Crossa, J., Cornelius, P. L., Yan, W. (2002): Biplots of linear-bilinear models for studying crossover genotype × environment interaction. Crop Science 42: 619–633.
- [16] Dehghani, H., Ebadi, A., Yousefi, A. (2006): Biplot analysis of genotype by environment interaction for barley yield in Iran. Agronomy Journal 98: 388–393.
- [17] Ding, M., Tier, B., Yan, W. (2007): Application of GGE biplot analysis to evaluate genotype (G), environment (E) and G×E interaction on P. radiata: case study. –

http://www.aloki.hu • ISSN 1589 1623 (Print) • ISSN 1785 0037 (Online)

DOI: http://dx.doi.org/10.15666/aeer/1703_58635885

Australasian Forest Genetics Conference, 11–14 April 2007, The Old Woolstore, Hobart, Tasmania, Australia.

- [18] Ebdon, J. S., Gauch, H. G. Jr. (2002): Additive main effect and multiplicative interaction analysis of national turfgrass performance Trials: II. Cultivar recommendations. – Crop Science 42: 497–506.
- [19] Eberhart, S. A., Russell, W. A. (1966): Stability parameters for comparing varieties. Crop Science 6: 36–40.
- [20] Finlay, K. W., Wilkinson, G. N. (1963): The analysis of adaptation in a plant breeding programme. Australian Journal of Agriculture Research 14: 742–754.
- [21] Gauch, H. G. (1988): Model selection and validation for yield trials with interaction. Biometrics 44: 705–715.
- [22] Gauch, H. G. (1992): Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier Amsterdam The Netherlands: 53–110.
- [23] Gauch, H. G. (2006): Statistical analysis of yield trials by AMMI and GGE. Crop Science 46: 1488–1500.
- [24] Gauch, H. G., Zobel, R. W. (1989): Accuracy and selection success in yield trials analysis. Theoretical and Applied Analysis 77: 443–481.
- [25] Génard, M., Lescourret, F., Bevacqua, D., Boivin, T. (2017): Genotype-by-environment interactions emerge from simple assemblages of mathematical functions in ecological models. – Frontiers in Ecology and Evolution 5. https://doi.org/10.3389/fevo.2017.00013.
- [26] Hagos, G. H., Abay, F. (2013): AMMI and GGE biplot analysis of bread wheat genotypes in the northern part of Ethiopia. Journal of Plant Breeding and Genetics 1(1): 12–18.
- [27] Hinge, V. R., Patil, H. B., Nadaf, A. B. (2016): Aroma volatile analyses and 2AP characterization at various developmental stages in Basmati and Non-Basmati scented rice (Oryza sativa L.) cultivars. Rice 9. https://doi.org/10.1186/s12284-016-0113-6.
- [28] Jain, B. T., Sarial, A. K., Kaushik, P. (2018): Stability analysis utilising AMMI model and regression analysis for grain yield of basmati rice (*Oryza sativa* L.) genotypes. – Journal of Experimental Biology and Agricultural Sciences 6: 522–530.
- [29] Jalata, Z. (2011): GGE-biplot analysis of multi-environment yield trials of barley (Hordeium vulgare L.) genotypes in south eastern Ethiopia high lands. – International Journal of Plant Breeding and Genetics 5: 59–75.
- [30] Jena, P. R., Grote, U. (2012): Impact evaluation of traditional Basmati rice cultivation in Uttarakhand State of northern India: what implications does it hold for geographical indications? World Development 40(9): 1895–1907.
- [31] Kamoshita, A., Babu, R. C., Boopathi, N. M., Fukai, S. (2008): Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Research 109(1–3): 1–23.
- [32] Kang, M. S. (1993): Simultaneous selection for yield and stability in crop performance trials: consequences for growers. Agronomy Journal 85: 754–757.
- [33] Khalili, I. A., Rahman, H., Rehman, N. U., Arif, M., Khalili, I. H., Igbal, M., Ullah, H., Afridi, K., Sajjad, M., Ishaq, M. (2011): Evaluation of maize hybrids for grain yield stability in north-west Pakistan. – Sarhad Journal of Agriculture 27(2): 213–218.
- [34] Lin, J. Y. (1994): Impact of hybrid rice on input demand and productivity. Agricultural Economics 10(2): 153–164.
- [35] Malosetti, M., Ribaut, J.-M., van Eeuwijk, F. A. (2013): The statistical analysis of multienvironment data: modeling genotype-by-environment interaction and its genetic basis. – Frontiers in Physiology 4. https://doi.org/10.3389/fphys.2013.00044.
- [36] Mitrovic, B., Stanisavljevi, D., Treski, S., Stojakovic, M., Ivanovic, M., Bekavac, G., Rajkovic, M. (2012): Evaluation of experimental maize hybrids tested in multi-location trials using AMMI and GGE biplot analyses. – Turkish Journal of Field Crops 17: 35–40.
- [37] Mohammadi, M., Karimizadeh, R., Hosseinpour, T., Falahi, H. A., Khanzadeh, H., Sabaghnia, N. et al. (2012): Genotype × Environment interaction and stability analysis of

http://www.aloki.hu • ISSN 1589 1623 (Print) • ISSN 1785 0037 (Online)

DOI: http://dx.doi.org/10.15666/aeer/1703_58635885

© 2019, ALÖKI Kft., Budapest, Hungary

seed yield of durum wheat genotypes in dry land conditions. – Notulae Scientia Biologicae 4: 57–64.

- [38] Nassir, A. L. (2013): Genotype × Environment analysis of some yield components of upland rice (Oryza sativa L.) under two ecologies in Nigeria. – International Journal of Plant Breeding and Genetics 7: 105–114.
- [39] Navabi, A., Yang, R. C., Helm, J., Spaner, D. M. (2006): Canspring wheat-growing mega or niche-adapted genotypes?. Crop Science 46: 1107–1116.
- [40] Pham, H. N., Kang, M. S. (1988): Intercorrelationships among and repeatability of several stability statistics estimated from international maize trails. – Crop Science 28: 925–928.
- [41] R Core Team (2017): R A Language and Environment for Statistical Computing. https://www.R-project.org/.
- [42] Rad, N. M., Kadir, M. A., Rafii, M. Y., Jaafar, H. Z., Naghavi, M. R., Ahmadi, F. (2013): Genotype x environment interaction by AMMI and GGE biplot analysis in three consecutive generations of wheat (Triticum aestivum) under normal and drought stress conditions. – Australian Journal of Crop Science 7: 956–961.
- [43] Rakshit, S., Ganapathy, K. N., Gomashe, S. S., Rathore, A., Ghorade, R. B., Nagesh Kumar, M. V. et al. (2012): GGE biplot analysis to evaluate genotype, environment and the interactions in sorghum multi-location data. – Euphytica 185: 465–479.
- [44] Samonte, S. O. P. B., Wilson, L. T., McClung, A. M., Medley, J. C. (2005): Targeting cultivar onto rice growing environment using AMMI and SREG GGE biplot analysis. – Crop Science 45: 2414–2424.
- [45] Silalertruksa, T., Gheewala, S. H., Mungkung, R., Nilsalab, P., Lecksiwilai, N., Sawaengsak, W., Sawaengsak, W. (2017): Implications of water use and water scarcity footprint for sustainable rice cultivation. – Sustainability 9(12): 2283. https://doi.org/10.3390/su9122283.
- [46] Singh, B. N., S. Fagade, M. N. Ukwungwu, C. Williams, S. S. Jagtap, O. Oladimeji, et al. (1997): Rice growing environment and biophysical constraint in rice agroecological Zones of Nigeria. – Meteorology Journal 2: 35–44.
- [47] Sreekanth, M., Hakeem, A. H., Peer, Q. J. A., Rashid, I. (2017): Low productivity of Indian agriculture with special reference on cereals. Journal of Pharmacognosy and Phytochemistry 6(5): 239–243.
- [48] Stojaković, M., Ivanović, M., Jocković, Đ., Bekavac, G., Purar, B., Nastasić, A., Stanisavljević, D., Mitrović, B., Treskić, S, Laišić, R. (2010): NS maize hybrids in production regions of Serbia. – Field and Vegetable Crops Research 47: 93–02.
- [49] Wanjari, R. H., Mandal, K. G., Ghosh, P. K., Adhikari, T., Rao, N. H. (2006): Rice in India: present status and strategies to boost its production through hybrids. – Journal of Sustainable Agriculture 28(1): 19–39.
- [50] Wu, W., Cheng, S. (2014): Root genetic research, an opportunity and challenge to rice improvement. Field Crops Research 165: 111–124.
- [51] Xu, Y. (2016): Envirotyping for deciphering environmental impacts on crop plants. TAG Theoretical and Applied Genetics (Theoretische und Angewandte Genetik) 129: 653–673. https://doi.org/10.1007/s00122-016-2691-5.
- [52] Yan, W., Hunt, L. A. (2001): Interpretation of genotype × environment Interaction for winter wheat yield in Ontario. Crop Science 41: 19–25.
- [53] Yan, W., Kang, M. S. (2003): GGE biplot analysis: a graphical tool for breeders, geneticists and agronomists. CRC Press, Boca Raton, FL.
- [54] Yan, W., Hunt, L. A., Sheng, Q., Szlavnics, Z. (2000): Cultivar evaluation and megaenvironment investigation based on GGE biplot. – Crop Science 40: 596–605.
- [55] Yan, W., Kang, M. S., Ma, B., Woods, S., Cornelius, P. L. (2007): GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Science 47: 641–653.
- [56] Zhang, Q. (2007): Strategies for developing green super rice. Proceeding of the National Academy of Sciences USA 104: 16402–16.

http://www.aloki.hu • ISSN 1589 1623 (Print) • ISSN 1785 0037 (Online)

DOI: http://dx.doi.org/10.15666/aeer/1703_58635885

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 17(3):5863-5885.

[57] Zobel, R. W., Wright, M. J., Gauch, H. G. (1988): Statistical analysis of a yield trial. – Agronomy Journal 80: 388–393.