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Abstract. Lingdingyang (LDY) is an important navigation waterway for the Pearl River delta (PRD), 

and an important passage for fresh water and sediments entering the sea. The data and hydrological 

information, including SSC, current, water level, and bed sediment was collected on July 6-7, 2005 to 

analyze its characteristics, and sediment transport. The data was entered into a hydrodynamic 

simulation model used to characterize the processes of sedimentation and morphological evolution of 

the Pearl River estuary (PRE). LDY was divided into three sub-areas dominated by (1) west shoal area, 

(2) jet flow area, and (3) saline water area. Navigation engineering and other human activities result in 

an increase of deposition rate. These characteristics can be greatly accelerated by human activities. 

Field data and model results indicate that the front system, composed of the shear front and tide 

incursion front, has an important impact on sedimentation. 

Keywords: fresh water, a hydrodynamic simulation model, navigation engineering, deposition rate, 

silting characteristics 

Introduction 

The Pearl River delta in southern China is one of the most complex deltas in world. 

It is a typical river network delta including three converging rivers and eight outlets 

emptying to the sea (Allen et al., 1980; Daniel et al., 2018). The three rivers are the 

West River (WR), North River (NR) and East River (ER). The eight outlets are the 

Humen (HM), Jiaomen (JM), Hongqimen (HQM), Hengmen (HM), Modaomen 

(MDM), Jitimen (JTM), Hutiaomen (HTM), and Aimen (AM). Humen and Aimen are 

tidal-dominated estuaries. The other six are fluvial-dominated mouths. Humen, 

Jiaomen, Hongqimen and Henmen, also called the eastern four mouths, empty into the 

tidal-dominated estuary of Lingdingyang (LDY) bay. LDY is characterized by three 

shoals and two channels, which refer to the West, Central, and East shoals, and the 

East, and West channels (Ren et al., 2001; Nwankwoala, 2019). The west shoal is an 

important buffer between Lingdingyang bay and the eastern three river mouths (JM 

HQM and HM). It is also a water passage carrying sediment from the three river 

mouths and a protecting barrier for the Lingding navigation channel. 

Tides of LDY belongs to irregular semidiurnal mixing tides, low tides and high 

tides occurring two times a day, with a tidal coefficient of 0.94 ~ 1.77. The LDY tidal 

range is less than 2 m, and due to the influence of the trumpet shaped topography, 

increasing tidal range from outer bay to head. Because of runoff, the tidal range 

descends from HUM to HM. Outer sea area, greatly affected by tide, ebb duration is 

approximately equal to flood duration. River outlet, affected by runoff, ebb duration is 



Wei – Zhu: Front systems and suspended sediment dynamics of Lingdingyang Bay in the summer, Pearl River estuary, South China 

- 8466 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 17(4):8465-8484. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/1704_84658484 

 2019, ALÖKI Kft., Budapest, Hungary 

longer than that of the flood. The flood and ebb duration ratio, is 0.93 ~ 1.26 in dry 

season, 1.05 ~ 1.55 in wet season. 

An estuary is a semi-enclosed coastal body of water, which is connected to the 

open sea, extending to a river to the limit of tidal influence, and within which sea 

water is diluted with fresh water derived from land drainage (Cameron et al., 

1963；Van Maren et al., 2016; Dalrymple et al., 1992; Dai et al., 2013, 2012; 2011a; 

Rahim et al., 2018). The estuary acts as a filter between the land and the ocean (Dai et 

al., 2011b), and sediment traps, retaining a proportion of their river and marine borne 

sediment load in the intertidal zone (Dellwig et al., 2000; Sharjeel et al., 2019). 

Dynamics of estuarine suspended sediments are very complex and strongly variable 

over time scales ranging from seconds to years (Dyer et al., 1988). In tidal estuaries, 

fine sediment dynamics is often related to the Mechanism of turbidity maximum zone 

(Fettweis et al., 2012; Ferriera et al., 1997; Grabemann et al., 1997; Hume and 

Herdendorf, 1988; Omini and Akpang, 2018). Subsequently, many literatures studied 

mainly TMZ and its response to estuarine forces (Jalón-Rojas et al., 2017, 2015; Jia et 

al., 2013; Chen et al., 1999; Largier, 1992; Shi, 2010). Another important process is 

estuarine front system, which has been given more attentions to since 1990’s 

(Williams et al., 2015; Li, 2004; Qiao, 2018). Fronts may exert control on the surface 

and water column sediment and pollutant partitioning and also on the distribution and 

persistence of bed load transport pathways (Li et al., 2003). Both estuarine circulation 

and tidal asymmetry are of great importance to the fine sediment processes (Lick et 

al., 1994), and the two processes are very obvious in front system. 

Previous research on sediments of LDY has involved the development of a 

mathematical tidal model (Lick et al., 1995), physical model (Lu et al., 2005), ground 

sampling surveys and theoretical analysis (Le Hir et al., 2001; Pinckney and Dustan, 

1990; Pritchard, 1967). Estuarine front is an important dynamical process, which 

exerts an influence on sedimentation (Reeves and Duce, 2001; Sarwar et al., 2019). 

According to dynamics, there are four types fronts in LDY, tidal intrusion front, head 

land front, oblique plume front, and shoal front (Ren et al., 2010). 

As there are enough gradients of density and velocity in waters, the fronts would be 

formed. Shelf saline water intruding there that make the difference of sediment 

dynamic process and sediment grain distribution in spatial, i.e. coarse, fine, and fairly 

coarse from upper to lower regions (Ren et al., 2006; Sarker et al., 2019). 

According to geomorphology, LDY can be divided into three geo-systems, tide 

inlet of HM (Northwest LDY), fluvial dominated area (West LDY), shelf saline water 

area (south LDY) (Duck and Wewetzer, 2001). The boundary of these power 

structures is the interface between two kinds of fronts, namely the continental shelf 

front and shear front. 

This paper focuses on the characteristics and sedimentation, as well as impacts of 

recent silting. Our goal was to understand the processes associated with front system 

and human activity leading to sedimentation during the wet season (Jiang et al., 2018). 

The LDY is dominated by runoff and most sediment comes from eastern outlets of 

PRD during the wet season. The system of shoals and channels plays an important 

role in sediment transportation and front systems also result from the geography of the 

system (Savenije, 2006). Human activity has an enormous impact on sedimentation 

and this is reflected in system evolution. 
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Materials and methods 

Morphology 

LDY is a funnel-shaped estuary located on the east side of the PRD (Fig. 1). The 

width of bay head is 4 km, width of bay mouth is 65 km, longitudinal length is 60 km, 

and total area 2100 km2. 

The West shoal is located in the west side of the Lingding navigation channel. It 

receives water and sediments from Hengmen, Hongqimen, Jiaomen, and its area is 

185 km2. In the 1940’s, floods scoured out the underwater levee, which gradually 

eroded then become the North branch. The North branch plays an important role in 

sediment transportation between the South branch and the Lingding channel (Fig. 2). 

The North branch acts as a flood diversion channel during the flood season, accelerates 

the flood discharge, and reduces flood pressure on Hongqimen and Henmen. The depths 

of North branch, South branch, and Lingding channel are 3-5 m, 7-8 m and 15 m 

respectively. Using the method of dynamic geomorphology, the channel system of the 

shoal can be divided into flood-dominated channels (flood channel) and ebb-dominated 

channels (ebb channel) in part B of Figure 1. During the dry season, tidal dynamics 

dominates the shoal, and the net transportation of sediments differs in the two channel 

types. In the wet season, the entire shoal is dominated by river dynamics and the net 

transportation of sediments seaward is consistent among the channels. Because the main 

river bifurcates easterly, the river dynamics weaken. The middle and lower segments 

evolve from an ebb channel to a flood channel in part B of Figure 1. 

 

 

Figure 1. Sketch of PRE 
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Figure 2. Sketch and measured station of study area (A: East tidal flat, B: Central tidal flat, C: 

West tidal flat, D: East channel, E: West channel; a: Humen, b: Jiaomen, c: Hongqimen, d: 

Hengmen, b1: north branch, b2: south branch) 

 

 

Hydrology and sediment 

The Pearl River has a mild subtropical monsoon climate with relatively abundant 

precipitation. Mean annual rainfall is 1526 mm and this is concentrated in 9 months 

which, together, account for 80% of the annual rainfall. SSC of the Pearl River is the 

lowest of the seven major China rivers. However, sediment transport capacity from 

runoff is large. Average sediment transport capacity is 85.7 million tons, which is the 

third largest amount for China rivers. The average SSC of Gaoyao station of West River 

is 0.320 kg/m3. 

PRE has an irregular semidiurnal tide, and the tidal range is small. The mean tidal 

range is 1.60 m and the maximum tidal range is 3.36 m. The PRE is a typical weak tidal 

estuary. Flood tide (current that moves toward shore) duration lasts 7 h and 20 min and 

mean ebb duration lasts 5 h and 30 min. The flood tide duration during the wet season is 

shorter than that in the dry season. 

LDY is a micro-tidal estuary. With a funnel-shaped topography, the tidal energy 

converges and tidal range increases from mouth to head. Average ranges of Chiwan, 

Sanbanzhou, and Dahu stations were 1.36 m, 1.59 m, and 1.69 m respectively. Tides are 

irregular semidiurnal mixed with ebbing and flooding twice a day. SSC during the wet 

season is larger than that of dry season, and SSC varies with ebb and flood (Table 1). In 

the wet season, fine sand is the major component of bed sediment at Hongqimen and 

Jiaomen. Particle size at these two outlets ranges between 0.1 mm and 0.5 mm, which 

occupies 90% of the total. The bed sediment of Humen is composed of medium coarse 

sand with a median particle diameter of 0.244 mm. 
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Table 1. SSC of eastern four outlets (unit, kg/m3) 

Outlet name Season 
Flood Ebb 

Average Maximum Average Maximum 

Henmen 
Dry season 0.029 0.071 0.031 0.059 

Wet season   0.570 0.670 

Hongqimen 
Dry season 0.021 0.050 0.021 0.034 

Wet season   0.720 0.830 

Jiaomen 
Dry season 0.044 0.110 0.035 0.074 

Wet season   0.420 0.610 

Humen 
Dry season 0.083 0.160 0.074 0.130 

Wet season 0.130 0.190 0.200 0.310 

 

 

Data 

We used the data of the second phase project of Zhongshan port. Synchronous 

hydrology sediment testing was completed by the hydrology and Water Resources 

Survey Bureau of the Yangtze River Water Conservancy Committee. 

The survey period included tidal cycles from July 6 to July 7 in 2005. Fourteen boats 

are used for fixed-point measures, and measured items included velocity, SSC, and 

salinity. Three water level stations were established. The scale of the topographic 

survey was 1:5000. Figure 2 shows the sites of the measuring stations and bed sediment 

sample points. 

Hydrological testing at fixed stations was done by using a conventional current meter 

that was fixed to a boat. SSC samples were obtained by using the 2000 CC horizontal 

type sampler once per hour. If the depth was greater than 5 m, we used the six point 

method (surface, 0.2 h, 0.4 h, 0.6 h, 0.8 h, bottom), or the three point method (0.2 h, 

0.6 h, 0.8 h). 

Suspended particles were analyzed using a centrifugal sedimentation particle size 

distribution instrument. We sampled bed sediments for particle size analysis using a 

cone type sampler, ensuring that the dry weight exceeded 50 g. The distance between 

two samples sites is less than 3 km. Analysis of bed sediment was done with a sonic 

vibration automatic sieving particle size analyzer and wide particle size analyzer. 

Salinity was determined using an electrode salinometer. 

 

Mathematical model 

The paper used Delft3D to model current, salinity, sediments. Delft Hydraulics has 

developed a unique, fully integrated computer software suite for a multi-disciplinary 

approach and 3D computations for coastal, river and estuarine areas. 

It can carry out simulations of flows, sediment transports, waves, water quality, 

morphological developments and ecology. It has been designed for experts and non-

experts alike. The Delft3D suite is composed of several modules, grouped around a 

mutual interface, while being capable to interact with one another. Delft3D-FLOW, 

which this manual is about, is one of these modules. Delft3D-FLOW is a multi-

dimensional (2D or 3D) hydrodynamic (and transport) simulation program which 

calculates non-steady flow and transport phenomena that result from tidal and 

meteorological forcing on a rectilinear or a curvilinear, boundary fitted grid. 
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In order to model the hydrodynamics and cohesive sediments, a model covering the 

eight outlets and outer sea was established. The computed area was divided into 

2050000 cells. The smallest side length in these cells was 10 m, and the largest was 

1000 m. It is depth chart of LDY (Fig. 3). The model setup is shown in the following 

figure (Fig. 4), Model correction in the following figure (Fig. 5). It is the main 

modelling parameters for cohesive sediments (Table 2). 

 

 

Figure 3. Depth chart of LDY 

 

 
Table 2. Model parameters for cohesive sediments 

Parameter Number Units 

Setting velocity 0.06-0.20  mm/s 

Bed shear stress of sedimentation 0.30-.0.50  N/m2 

Bed shear stress of erosion 0.55-0.80  N/m2 

Erosion parameter 1.2e-4--1.8e-4 kg/m2/s 

Initial layer thickness 0.1  m 
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Figure 4. Model area (A) and local grid configuration (B) 
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Figure 5. Model calibration figures 
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Results 

Hydrodynamic characters 

In wet season, LDY is dominated by discharge from runoff, and Salinity of LYD 

except a small south fraction is zero. The chart of modeling current field of model is 

shown in Figure 6. In flood tide duration, the velocity is very small in LDY, even no 

flood tide current in outlets. But, the ebb tide flow is very large, reaching above 1.0 m s-1 

(Fig. 6). 

 

 

Figure 6. Current field of model (A: flood tide, B: ebb tide) 

 

 

High saline water from continental shelf intruders along both sides of Hong Kong 

Island to LDY, and salinity of lower layer accounts for over 30‰ (Fig. 7). The tide 

intrusion front (also tide intrusion front) comes into being due to the large gradient of 

salinity and density. However, because of the difference of velocity and landforms due 

to shoal and trough in west shoal border zone of LDY, another front is generated. 
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Figure 7. Salinity charts (‰; A: surface, flood, B: bottom, flood, C: surface, ebb, D: bottom, 

ebb) 

 

 

Based on the analysis above, the LDY can be divided into three type sub-areas of 

dynamic sedimentation, west area, jet-flow area, salt water area (Fig. 8). The west area 

is dominated by discharge from JM, HQM, HM, and flow seaward along West shoal 

into outer sea. Salt water area refers to the southeast of LDY, and the main 

characteristic is high salinity and density, resulting in three dimensionality of flow. 

Large part area of LDY is affected by jet-flow (Shilun, 1994) due to ebb current from 

HUM. The jet-flow structure is complicated, and evolves into plume flow in the end of 

jet-flow, which is suffered from salt water from middle and lower layer due to 

continental shelf water intrusion. So, fresh water from HUM flow seaward through 

upper layer. 

Three dynamical structures interact through front (Figs. 9 and 10), resulting in 

control of water and sediment movement, also control the stability of main channel and 

sedimentation balance. According to the salinity, these dynamical structures correspond 

to three water mass, the fresh water, diluted water and sea water. The core part of the 

estuary is controlled by diluted water. 

The diluted water mass is under the action of runoff discharge, and develops seaward 

in flood season. During the dry season, it recedes deeper into the land. In the dry season, 

the length of diluted water can reach 83 km, while the flood season is below 40 km. In 

above section of stagnation point, the kinetic is barotropic, and the net material is to 

transport seaward. In lower section of stagnation point, the pressure is baroclinic, and 

net material transport landward. 

According to the surveying data, LDY is dominated by seaward flow. The velocity is 

faster and the duration is longer during the ebb period than in flood tide. The velocity of 

the middle and lower layers is greater than the surface downstream from the West shoal 

during the flooding period. During ebb, the surface velocity is the greatest. During both 

flood and ebb, the surface velocity upstream is greatest in surface, middle and bottom 

layers. Because flows from Lingding channel, North branch, and South branch of 
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Jiaomen converge in the West shoal, surface velocity increases seaward during ebb. The 

majority of LDY was dominated by freshwater. Their middle and bottom layers were 

dominated by highly saline water from the shelf in the summer, especially during the 

flood period. The bottom maximum salinities of stations 4, 10 and 9 were, respectively, 

22‰, 17.1‰, and 7.8‰ during the flood period, and the salinity of the rest stations was 

zero. Figure 7B and D, illustrates the lower layer salinity of the lower section of the 

LDY. During the flood period, a salt wedge intrudes landward, and the salinity structure 

is highly stratified. This is referred to as the “tide inrush front” (Simpson and Turrell, 

1986; Oyedotun, 2019). 

 

 

Figure 8. Dynamical subarea (the black broad line, estuarine front, the red broad line tide 

intrusion front, also saline wedge, A: fluvial area, B: jet-flow area, C: saline water area) 

 
 

 

Figure 9. Schematic diagram of a vertical section perpendicular to a frontal convergence zone. 

(After Klemas and Polis, 1977; Ferrier, 1997) 
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Figure 10. Schematic illustration of the interaction of tidal intrusion front with the lateral shear 

to produce a V-shaped front with a single point convergence at the apex and attendant gyres. 

(After Simpson and Turrell, 1986; Ferrier, 1997) 

 

 

Front system and suspended sediment transportation 

Sediments, moving from river to sea, must pass through three hydrodynamic 

sections. The three sections are the river, near mouth, and estuary. The downstream 

limit of the river section is the tidal limit (Sanshanjiao), the near mouth section is the 

area between the tide limit and the tidal current limit (near the 21st Stream). The estuary 

section is the area between the tidal current limit and the front of the shelf water (near 

Hong Kong). These three sections play important roles in sediment transportation and 

deposition. When flow enters the tidal limit, the flow will be surfing from the reaction 

force of the tide and the longitudinal gradient of surface level will flatten out and flow 

velocity will decrease (Nouaim et al., 2019). As a result, the relative coarse silt group of 

suspended sediments will settle on the bed and because the transportation force has 

decreased, the coarse sand and gravel will be deposited. Field data regarding the first 

settlement ratio is not available but in the Yangtse River estuary, 10-15% of suspended 

sediment will be deposited on the bed (Simpson and Nunes, 1981). Sediment that enters 

the estuary section suffers from bidirectional flow during flood and ebb periods. 

Sediment that is temporarily deposited on the bed during floods erodes due to ebb 

currents. Flow, which enters the West shoal, diffuses on the shoal surface, velocity 

declines and sediments deposit on the bed. The two flows from the West shoal and west 

channel converge at the edge of the West shoal and form a shear front (Figs. 11 and 12). 

Because of significant salt water invasion into the LDY from the middle and bottom 

layers, tide invasion fronts become important in the southeast area of LDY. Sediments 

in the front will settle again. According to the July 2005 data, about 3% of the total 

suspended sediment deposits, and the majority of the bed load is trapped. The ancient 

riverbed sand can be transported to the estuary from human agitation resulting from 

sand mining. SSC chart is shown in Figure 11, which show clearly transportation trend 

of suspended sediments in three water mass. 

The silting content is high, and Mean percent content of stations 1, 5, 6, 7, 8 is 

respectively 73.8%, 70%, 68.2%, 66.9% and 66.5%, indicating that the percentage of 

silt decreases seaward (Table 3). Average silt percentage of stations 9 and 10 was 

65.5% and 66.1%, respectively, which is less than that of the West shoal. Silt content of 

suspended matter decreases seaward indicating that coarse sediments settle gradually 
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during the transportation process, and suspended sediment becomes bed load. Surface 

velocity at ebb of stations 5, 6, and 4 increased longitudinally and the mean silt content 

decreased. Median diameter of bed sediment decreases seaward. Median particle 

diameters at stations 6, 7, 8 and 4 were 0.071 mm, 0.068 mm, 0.026 mm, and 

0.026 mm, respectively. The latitudinal change rule of median diameter and percentage 

of sand in bed sediment is related to the longitudinal variation. Median diameter and 

percentage of sand decreased from the West shoal to the west channel. Figure 12 is the 

SSC section of west channel, which illustrate that suspended sediments is transported 

through the upper layer of salt water area. Front systems and sediments transportation 

are shown in Figures 13 and 14. 

 

 

 

Figure 11. SSC chart (kg/m3, A: flood, upper layer; B: flood, lower layer; C: ebb, upper layer, 

D: ebb, lower layer) 
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Figure 12. SSC section of Lingding navigation channel (A: flood period, B: flood slack, C: ebb 

period, D: ebb slack) 

 

 

 

Figure 13. Front systems and sediments transportation (blue arrow: transportation orientation 

of cohesive sediment) 
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Figure 14. Conceptual model of estuarine circulation and sediment transportation (A: flooding 

tide, B: ebbing tide; TM: turbidity maximum) 

 

 
Table 3. Percentages of fine sand and clay in suspended sediment 

Items 1 5 6 7 8 4 9 10 

Silt 

Mean 73.8  70.0  69.3  68.2  66.9  66.5  65.5  66.1  

Max 87.3  67.7  72.4  74.9  70.6  76.0  65.5  67.4  

Min 62.0  59.6  57.4  57.4  56.8  52.1  51.8  51.4  

Clay 

Mean 26.2  30.0  30.7  31.8  33.1  33.5  34.5  33.9  

Max 38.0  40.4  42.6  42.6  43.2  47.9  48.2  48.6  

Min 12.7  32.3  27.6  25.1  29.4  24.0  34.5  32.6  

 

 

Action of front systems on sedimentation 

Estuaries are located in the transition zone between rivers and the sea, and have 

zones or fronts which have significant impacts on sedimentation and pollutants. There 

are at least three types of fronts in LDY: tidal intrusion, headland, and shoal fronts 

(Talke et al., 2009). Based on charts of currents, landforms, and measured data, we 

propose the use of shear front instead of shoal front. The physical significance of a 

shear front is clearer than that of a shoal front. Figure 7 shows that there is salt wedge 

southeast of the LDY, which varies with ebb and flood (Yang, 2018). In fact, this is the 

tide intrusion front. Therefore, the tide intrusion front and the shear front become the 

main front system of the LDY. Fronts are formed by several mechanisms, including 

tidal intrusion, axial convergence, advective flow, and flow separation. Fronts act as 

temporary barriers, inhibit exchange of water masses, and entrap free particulate 

materials. We suggest that, in terms of suspended sediment transport through and within 

estuaries that are characterized by fronts, such features should be considered as “sieves” 

in the estuarine sediment transfer system (Townend, 2005). The “sieve” or trapping 

function for sediment is achieved by front systems of the estuary. Sediment transport 

characteristics of shear fronts include: (1) in a northerly direction, the surface water and 

sediments move downward, while in deeper water the sediments move upward; and (2) 
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in a westerly direction, the surface water and sediments move into the channels, while 

in deeper water the sediments move into the shoals (Townend, et al., 2000). Therefore, 

the shear fronts between the shoals and the channel act as a barrier affecting the 

sediment deposition into the deep channel from the shoals (Uncles and Stephens, 1993). 

Fronts play an important role as barriers, traps, and filters for sediments. Sediments 

from the North branch will be trapped in an area near the shear front. The sedimentation 

rate of the region with 3-6 m depth is greater than in the region with depths > 6 m. But, 

the shear front of the West shoal also has an erosion effect. During ebb periods, double-

spiral circulation forms on both sides of the shear front, and, driven by longitudinal 

current, flows seaward with velocity greater than 1.0 m/s. The spiral flow will 

effectively scour the bed near the Lingding navigation channel. The secondary spiral 

flow associated with the front had the greatest influence on the lateral distribution of 

finer grains and the least influence on the lateral distribution of coarser grains (Uncles et 

al., 2006). So, the sedimentation rate of areas with 6-8 m depths is less than that of areas 

where the depth < 6 m (Fig. 15). 

 

 

Figure 15. Depositional thickness of suspended sediment (m, half a year, from model result) 

 

 

The tide intrusion front is located southeast of the LDY and varies with ebb and 

flood. The front penetrates landward under the water during flood, and the salinity 

structure is highly stratified. In addition, the front retreats seaward during ebb period. 

The formation and development of the tide intrusion front is opposite to that of the shear 

front. The functions of the tide intrusion front are similar to that of the shear front, 

which provides a barrier, filters, and traps material. However, the transportation 

function of this front is easy to underestimate. The West shoal is an important passage 
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for fresh water, sediments, and pollutants. Materials from land are transported to sea 

along the front. The tide intrusion front also possesses the function of transportation, not 

by transport landward under water, but also transport seaward by the fresh water of the 

middle and top layers (Yang, 2018). 

Discussion 

Natural sediment sinks have been removed in many estuaries and tidal basins, and 

the resulting loss in accommodation space likely led to an increase in the suspended 

sediment concentration (Winterwerp et al., 2013). However, channel deepening also 

leads to higher SSC levels (Kang et al., 2018; Wu et al., 2003). Larger engineers such as 

reclamation, port construction, result in a reduction of the tidal prism, leading to smaller 

tidal flow velocities in the tidal channels, thereby promoting sediment deposition 

(Zhifu, 1995). Human activities have got attentions in Pearl River estuary (Zhifu, 1994) 

and Yangtze River estuary. 

Economic development and human activity have had a large impact on the LDY 

estuary. The main human activities of LDY include reclamation, port construction, 

mining of bed sand, and channel dredging. The reclamation area includes 204 km2, 

which is 17% of the total area. Bed sand harvesting is up to 200 million m3, which is 

equivalent to 8% of the capacity of LDY. 

Human removal of bed sediment for building construction has deepened the riverbed. 

After 2000, large-scale projects such as construction of the Lingding navigation channel 

and construction of the Nansha port near the West shoal will increase SSC. Because the 

front system of the West shoal can trap river-borne and sea-borne sediment, the 

sedimentation rate has increased after 2000 (Table 4). Although there were no human 

construction projects on the West shoal, the indirect impact of upstream and 

downstream projects on sedimentation has been significant. 

 
Table 4. Sedimentation rate of west shoal 

Year Depth Area (km2/a) Volume (Ten th. m3/a) Sed. rate (cm/a) 

2000~2005 

> -2 0.3763 15.46 0.60  

-2~-3 0.2987 41.82 1.00  

-3~-4 0.5881 100.45 3.40  

-4~-5 0.0023 128.03 5.00  

-5~-6 -0.3921 125.79 4.30  

-6~-7 -0.7358 24.84 1.10  

-7~-8 0.1593 26.4 3.00  

1986~2000 

> -2 -0.064 3.71 0.10  

-2~-3 0.4292 9.06 0.20  

-3~-4 0.1072 41.48 1.60  

-4~-5 0.052 52.84 2.10  

-5~-6 -0.0257 52.24 1.70  

-6~-7 -0.5246 29.4 1.10  

-7~-8 -0.2024 -13.86 -1.80  
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Conclusion 

The LDY is a complex tidal bay, which has two main front systems, tide intrusion 

front and shear front. These two front systems divided the LDY into three dynamics 

area, west shoal area, jet-flow area, salinity water area. Sediment transport and 

deposition processes of the three areas differ (Dager, 2017). Silting characteristics 

include shoal silting and channel deepening. Sediment transportation and sedimentation 

are subject to front systems, which sedimentary facies is corresponding to. Human 

activities such as river estuary regulation and channel dredging increase SSC, which 

leads to promote sediment deposition. The amount of sediment deposition has greatly 

increased since 2000. 

It can be seen that human activities such as estuary regulation and river dredging are 

important factors for increasing sediment deposition, and the increasing sediment 

deposition will make the imbalance of sediment transport more prominent. In order to 

improve navigation conditions and reduce siltation under sluice gates, measures such as 

drainage, mechanical dragging and tidal scouring can be taken. 
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