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Abstract. To disclose the formation mechanism of flash flood disaster, it is necessary to develop a 

dynamic critical rainfall model that considers all influencing factors. Targeting the Peihe River watershed 

in China’s Henan Province, this paper designs a runoff convergence calculation plan based on the 

geomorphological instantaneous unit hydrograph (GIUH), and uses the plan to simulate 8 floods in the 

target watershed. The simulated results were close to the measured data. Next, the GIUH was adopted to 

predict the critical rainfalls of 16 floods in the target watershed. The radial basis function neural network 

(RBFNN) was selected to create a dynamic critical rainfall prediction model, with the preceding rainfall, 

cumulative rainfall and rainfall intensity as the inputs and the critical rainfall of each event as the output. 

The model was employed to predict the critical rainfalls of 6 historical floods. The results show that the 

prewarned critical rainfall reached the pass rates of 100% and 83.3%, respectively, for the 1 h and 3 h 

periods. Hence, that the GIUH can ensure the calculation accuracy despite the lack of data in regions 

prone to flash flood; the RBFNN-based dynamic critical rainfall prediction model can effectively improve 

the accuracy of critical rainfall calculation and the flash flood prewarning. 

Keywords: flash flood disaster, prewarning index, concentration model, disaster prevention object, 

geomorphological parameters 

Introduction 

In recent years, the climate change has induced extreme weather conditions across 

the world, such as the extreme rainfall events. As a result, the flash flood, a rapid 

flooding in small hilly regions associated with heavy rainfall, became a frequent global 

disaster with increasing scope of influence (Gruntfest and Handmer, 1999). With 

complex influencing factors and severe damages, this disaster is difficult to prevent or 

mitigate, making it the key to flood prevention and mitigation. The critical rainfall is an 

important parameter in the prewarning and prevention system of flash flood disasters 

(Li et al., 2014). A pre-warning should be issued when the rainfall is forecasted to reach 

the critical level, and a warning should be released once the real-time rainfall reaches 

the critical value. Therefore, the accuracy of critical rainfall is essential to the reduction 

of casualties and property losses. 

Currently, the critical rainfall is mainly determined by the following methods: flash 

flood guidance (FFG) (WMO, 1994; Villarini et al., 2010; Carpenter et al., 1999; Diagi, 

2018; Norbiato et al., 2008; Georgakakos, 2006; Seo et al., 2013; Vizzari et al., 2018; 

Clark et al., 2014), single-station or regional critical rainfall method based on the 

characteristic flood-causing rainfall (Chen and Yuan, 2005; Chen et al., 2014), flood-

causing flow inversion based on analytical calculation of runoff generation and 



Wang – Ma: Determination of dynamic critical rainfall based on geomorphological instantaneous unit hydrograph and radial basis 

function neural network 
- 8916 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 17(4):8915-8930. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/1704_89158930 

 2019, ALÖKI Kft., Budapest, Hungary 

convergence (RGC) (Mao, 2016; Ma, 2017), dynamic critical rainfall method based on 

different soil saturations (Liu et al., 2010; Ye et al., 2014) and the dynamic critical 

rainfall method based on various influencing factors (Guo et al., 2016). Below is a brief 

introduction to each of these methods. 

The FFG method fully considers such three factors as rainfall, antecedent soil 

moisture and the underlying surface (Ren, 2015). Firstly, a control section is selected at 

the prewarning location, and the characteristic flow of the section is computed 

according to the river section data of the watershed. Next, the design rainfall and other 

parameters are inputted to the model, and the rainfall-caused flood is simulated through 

RGC calculation. Finally, the critical rainfalls in different periods at the target location 

are determined, considering the impacts of antecedent soil moisture on flash flood. 

Based on a physical mechanism, the FFG method provides dynamic information for 

prewarning, thanks to its consideration of rainfall, the underlying surface as well as the 

impacts of soil water content. Thus, this method has been trusted and adopted by most 

countries in Europe, the Americas and Africa (Georgakakos, 2006). However, the FFG 

requires professional support platforms and high-quality data on rainfall. In practice, it 

is very difficult to acquire the parameters of hydrological model, or set up a complete 

historical flash flood database to verify the flash flood warning. 

As for the single-station or regional critical rainfall method based on the 

characteristic flood-causing rainfall, it is necessary to collect the data on multiple flood-

causing rainfalls. Without considering antecedent moisture and spatiotemporal rainfall 

distribution, this method faces a high calculation error in regions with fewer floods. 

By the flood-causing flow inversion based on analytical calculation of RGC, the 

critical rainfalls in different prewarning periods under dry, general and wet conditions 

are computed based on the flood-causing flow and the RGC model of the watershed. 

The real-time prewarning is realized through two steps: estimating the soil water 

content and the corresponding critical rainfall in each prewarning period, and 

comparing the estimated value with the forecasted value. The estimation is bound to 

bring a large error, if the rainwater condition in the region is managed by a single 

department. What is worse, this method, taking account of only a few factors, ignores 

the effects of spatiotemporal distribution of rainfall and preceding rainfall on the bottom 

water of the river. 

Following the dynamic critical rainfall method based on different soil saturations, the 

soil saturation and rainfall of the watershed in each prewarning period are illustrated as 

a scatter plot, and a straight line of critical prewarning rainfall is drawn in the scatter 

plot, dividing the state space of soil saturation and the maximum rainfall in each period 

into two parts. In this way, the critical rainfall for flash flood prewarning changes with 

the soil saturation in the watershed, laying the basis for dynamic prewarning. Compared 

with the previous methods, this strategy fully considers the dynamic variation in soil 

saturation in actual floods. Nevertheless, the soil saturation-based prewarning method 

will produce a constant critical rainfall after the soil is saturated with water, which goes 

against the actual situation. 

In the dynamic critical rainfall method based on various influencing factors, the 

critical rainfall of each event is computed according to the measured rainfall process 

and the watershed RGC model, and the critical rainfall of each event is correlated with 

the rainfall characteristics of each event, forming the dynamic critical rainfall curve. 

This method improves the accuracy of critical rainfall calculation to some extent, as it 

fully considers how the critical rainfall is affected by the time variation of rainfall, the 
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cumulative rainfall, and the antecedent moisture. However, the calculation accuracy 

needs to be further improved by differentiating the impact degree of various factors on 

the critical rainfall. 

The watershed RGC calculation is fundamental to the computation of the critical 

rainfall. The calculation of runoff generation, affected by geographic and geomorphic 

conditions, directly bears on the flooding of the watershed outlet section, which in turn 

affects the accuracy of critical rainfall and real-time pre-warning. In the existing rainfall 

calculation methods, the runoff generation is often computed by inference formula 

method (Liu et al., 2017; Li, 2016) and hydrograph models of multiple units (e.g. 

empirical unit, instantaneous unit and geomorphological instantaneous unit (Ye et al., 

2013; Wang et al., 2018). 

Based on five-point generalization, the flood hydrograph obtained by the inference 

formula method needs manual calibration, as it deviates from the actual situation in the 

rising and recession phases. Besides, the effects of the underlying surface (e.g. 

geomorphic conditions) is not taken into account. 

The integrated instantaneous unit hydrograph, integrated empirical unit hydrograph, 

integrated reference formula and geomorphological instantaneous unit hydrograph are 

all tools to estimate the flood hydrograph in regions lacking the necessary data. 

Specifically, the integrated unit hydrograph method firstly analyzes the watersheds with 

measured data in the study area, derives the relationship between the unit hydrograph 

and the geographic eigenvalues of the watershed, and then deduces the unit hydrograph 

of the region lacking the necessary data according to the local geographic eigenvalues 

and the said relationship. Assuming the linearity and time invariance of the set sum, the 

unit hydrograph is a function of the natural geographic features of the watershed, but 

cannot be directly adopted for watersheds lacking necessary data. 

The geomorphological instantaneous unit hydrograph (GIUH) can acquire the 

geomorphic features of the watershed in real time, using digital elevation model (DEM), 

geographic information system (GIS), remote sensing and other means. In addition, 

these features are digitalized such that the spatiotemporal effects of human activities can 

be fully considered in hydrological simulation. The overall consideration ensures that 

the simulated results are close to the actual situation. 

In this paper, the geomorphological features of the target watershed are extracted by 

ArcGIS, and used to establish a runoff generation model based on the geomorphological 

instantaneous unit hydrograph proposed by Rodriguez-Iturbe and Valdes (R-V GIUH). 

Then, the established model was adopted to calculate the critical rainfalls of several 

rainfall events measured in the watershed. Considering such factors as rainfall intensity, 

cumulative rainfall and antecedent moisture, the author constructed the dynamic critical 

rainfall model by the radial basis function (RBF), which discloses the dynamic 

relationship between critical rainfalls of several floods and various influencing factors. 

The model was trained into the prediction model by the data of several floods, and 

applied to forecast the dynamic critical rainfall. The research findings shed new light on 

the calculation of dynamic critical rainfall. 

Materials and methods 

Watershed overview 

Located in the center of Xinxian County, Xinyang Prefecture, Central China’s Henan 

Province, the Peihe River mainly flows through a mountainous region with huge 
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elevation difference and complex geomorphic features. The watershed (Fig. 1) is 

covered by yellow brown soil, paddy soil and moisture soil. The climate is relatively 

humid, with an annual mean rainfall of 1,335 mm. The low vegetation coverage makes 

the watershed prone to natural disaster and soil erosion. The weather in the watershed 

could be vastly different from area to area. Thus, heavy rains are commonplace here, 

leading to severe flash floods. According to statistics, 12 major flash floods has hit the 

Peihe River watershed since 1949, causing losses of hundreds of million yuan and 

affecting tens of thousands of people. 

In this research, the villages of Xinxian County are selected from the watershed as 

the objects of disaster prevention. Many of the widely scattered settlements are highly 

susceptible to flash floods. The villages along the river cann withstand a 20-year flood 

at the most. Because of the small watershed and short convergence time, the river water 

will rise above the banks of the rainfall is too intense, causing damages to the villagers. 

 

 

Figure 1. Overview of the Peihe River watershed 

 

 

There is a rainfall station (Yangwan) and a hydrological station (Peihe) in the Peihe 

River watershed. The two stations observe such items as precipitation, water level and 

flow rate. The available data cover the heavy rains in flood season over the 32 years 

between 1982 and 2013. The data period is sufficiently long to have statistical 

significance, that is, the data can reveal the actual rainfall features in the watershed. 
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Most of the natural river sections are either V-shaped or U-shaped, with a total 

catchment area of about 21 km2. The prewarning water level of the watershed was 

determined as 97.3 m according to the measured large section data of the Peihe River 

watershed provided by Henan Provincial Flood Prevention Drought Relief Headquarters 

and the 2015 Flash Flood Disaster Analysis and Evaluation Report of Xinxian County, 

Henan Province. The flow rate corresponding to the prewarning flow, i.e. the 

prewarning flow, was determined as 92 m3/s by looking up the water level-flow rate 

relationship curve of the watershed, which was obtained based on the perennial 

measured flow rates and water levels. 

 

Geomorphologic instantaneous unit hydrograph proposed by Rodriguez-Iturbe and 

Valdes (R-V GIUH) 

The runoff convergence model of R-V GIUH theory is established based on 

geomorphic and hydrodynamic parameters of the watershed. The model can reflect the 

actual geomorphic features with a few easy-to-obtain parameters. In this paper, the 

general formula proposed by Wen et al. (1991) is adopted to calculate the R-V GIUH of 

the watershed (Eq. 1): 
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where i and j are the orders of rivers ( ≠ );  and  are the mean waiting time of order 

 and order  rivers, respectively;  is the order of the river network;  is the 

initial state probability of a order i river in a order  river network, i.e. the size ratio of 

the watershed of the order i river to the watershed of the entire river network;  is the 

correlation coefficient between the mean waiting time  and the state transition 

probability  (  is the ratio of the number of order i rivers flowing into order  rivers 

to the total number of order i rivers; t is time. All these parameters can be calculated 

based on the geomorphic and hydrodynamic parameters of the watershed. 

 

Extraction and calculation of geomorphic parameters 

The river network of the watershed was extracted from the DEM in the study area 

using the software Geographic Information System (GIS). Then, the Strahler 

classification (2015) was performed on the extracted river network, yielding the river 

section data with watershed orders. On this basis, the geomorphic features of each river 

section in the watershed were determined, including number, length and catchment area, 

and the river number ratio RB, river length ratio RL and area ratio RA were respectively 

calculated as follows by the Horton’s law (Eqs. 2-4): 
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where  and  are the number of order i rivers and that of order i-1 rivers, 

respectively;  and  are the mean length of order i rivers and that of order i-1 

rivers, respectively;  and  are the mean watershed area that contributes to the 

runoff of order i rivers and that to the runoff of order i-1 rivers, respectively; C is a 

constant;  is the highest order of the river system. 

 

Determination and calculation of hydrodynamic parameters 

The hydrodynamic parameters of a watershed include the Manning’s roughness 

coefficient n and the mean river width B. The former was obtained by table look-up 

according to the local conditions. The latter was generalized as an unknown parameter 

that varies with the net rainfall intensity ir. The mean waiting time  of rivers on each 

order was calculated based on the two parameters. The calculation formulas of n, B and 

 are as follows (Eqs. 5-7): 
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where  is the net rainfall intensity of each event;  is the flow rate. 

 

Calculation of critical rainfall of each event 

The critical rainfall of each event refers to the critical rainfall in the prewarning 

period of a flood-causing rainfall event. It is the basis for determining the dynamic 

critical rainfall for the disaster prevention in the target location. In light of the measured 

rainfall data, the value of this parameter was obtained by the RGC calculation through 

the following steps. 

(1) The rainfall process from the beginning of rainfall to any time T was intercepted 

from the rainfall data, the RGC process of the watershed was calculated using the 

rainfall-runoff correlation map and the R-V GIUH, and the flood hydrograph was 

derived for the rainfall event. 

(2) The peak flow Qpeak in this rainfall event was obtained based on the flood 

hydrograph. If the peak flow is greater than the prewarning flow Qprewarning, then the 

flash flood has occurred. In this case, the rainfall process from the beginning of rainfall 

to any time T was intercepted again, and Step (1) was repeated until the peak flow is 

smaller than the prewarning flow. 

(3) When the peak flow is smaller than the prewarning flow, the rainfall in the T + 1 

period was given a value in ascending order, and the flood process induced by the 

rainfall in this period was derived. If the peak flow is close to the prewarning flow, then 

the rainfall in the T + 1 period is the critical rainfall of the event after the rainfall event 

lasts for a period of T. 
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(4) The critical rainfalls of different events can be determined by the same method. 

 

RBF-based prediction of dynamic critical rainfall 

The RBF neural network (RBFNN) is a RBF-based artificial neural network. With a 

three-layer feedforward structure, the network has a nonlinear mapping from the input 

layer to the output layer and a linear mapping from the hidden layer to the output layer. 

The good nonlinearity enables the RBFNN to approximate any nonlinear function, 

disclose the intractable regularity in the system, and describes the potential relationship 

between the predictive index and the influencing factors. Known for its good 

generalization ability, the network has been successfully applied to nonlinear function 

approximation, time series analysis, data classification, pattern recognition, system 

modeling and fault diagnosis. Considering the complex nonlinear relationship between 

critical rainfall and its influencing factors, the RBFNN is a desirable tool to build the 

dynamic relationship model about the critical rainfall and the influencing factors. This 

network can be implemented despite the lack of data in regions suffering from flash 

floods, as it requires only a few training samples and outputs a unique training outcome. 

In this paper, antecedent moisture, cumulative rainfall and rainfall intensity are taken 

as an input, and the critical rainfall of each event was considered as the output to 

construct a three-layer neural network. Through the training of the learning samples and 

the checking of the test samples, the dynamic relationships between the critical rainfall 

and the influencing factors were established, forming the dynamic critical rainfall 

prediction model (Fig. 2). Mathematical theory of RBFNN is detailed in Zeng et al. 

(2018). 

 

 

Figure 2. structure of the dynamic critical rainfall prediction model 

Results 

Runoff generation plan 

The runoff generation was calculated based on the rainfall-runoff correlation map 

(Fig. 3), which was checked and modified against the 14 typical floods in the Peihe 

River watershed between 1982 and 2013. 

As shown in Figure 3, since the 1980s, the actual rainfall-runoff curve in the Peihe 

River watershed was basically consistent with that in the map, so was the runoff 

volume. This means the rain and flood data are valid, and the rainfall-runoff correlation 

map can be adopted for runoff generation calculation. 
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Figure 3. Rainfall-runoff correlation map of the Peihe River watershed 

 

 

Runoff convergence plan 

Parameter extraction and model construction 

The digital elevation data were downloaded from the Geospatial Data Cloud 

(http://www.gscloud.cn), with a spatial resolution of 30 m. The data about the Peihe 

River watershed were processed on ArcMap, producing the river network in the 

watershed. The network was then divided into four orders by the Strahler classification 

(Fig. 4). The number and total length of rivers in each order were counted (Table 1). 

Next, the watershed was split into several sub-watersheds (Fig. 5). The area of each 

sub-watershed was determined, and the relevant geomorphic parameters were computed 

by Equations 2-4 (Table 1). 

 

 

Figure 4. River network classification  

 

 

 

Figure 5. Vector graph of catchment area 
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Table 1. Geomorphic parameters of the Peihe River watershed 

River 

order 

River 

numbers 

Total length 

of the river 

(km) 

Average 

length of the 

river (km) 

Total area of the 

catchment (km2) 

Average area of 

the catchment 

(km2) 

River 

number 

ratio 

River 

length 

ratio 

Area 

ratio 

1 47 20.52 0.43 12.20 0.25 

3.63 2.57 2.58 
2 12 10.20 0.85 4.14 0.34 

3 3 3.45 1.15 1.85 0.61 

4 1 5.10 5.10 2.86 2.86 

 

 

The watershed area was acquired as 21.07 km2 during the extraction of the river 

network. The area threshold was 0.1 km2, and the corresponding stream gradient was 

13.51%. The Manning’s roughness coefficient was determined as 0.025 m by table 

lookup. The mean river width B was initially determined as 2 m according to the section 

data extracted on the GIS. On this basis, the value of B was calibrated through the 

simulation of 4 measured floods. The data of the 4 floods were fitted to obtain the 

relationship between B and the net rainfall intensity : . 

With these parameters, the R-V GIUH of each flood was derived by (Eq. 1). 

 

Model verification 

To verify the applicability of R-V GIUH in regions lacking hydrological data, the R-

V GIUH was created based on the parameters of 8 rainfall events measured by Peihe 

Hydrological Station from 1982 to 2013, and the resulting unit hydrographs were 

compared with the measured data. Figure 6 and Table 2 show the comparison between 

the simulated results and the measured results of the 8 floods. 

 

   
(a) July 19, 1982 (b) July 17, 1983 

  
(c) August 8, 1984 (d) July 17, 1986 
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(e) July 5, 1987 (f) July 19, 1990 

  
(g) July 1, 2007 (h) August 16, 2008 

Figure 6. Comparison between the simulated results and the measured results of the 8 floods 

 

 
Table 2. Comparison between the simulated results and the measured results of the 8 floods 

Flood number 
Measured 

peak/(m3/s) 

Simulated 

peak/(m3/s) 

Relative 

error/(m3/s) 

The time error of 

peak/(min) 

July 19, 1982 200 187 -13 18 

July 17, 1983 78 75.09 -2.91 40 

August 8, 1984 107 98.29 -8.71 25 

July 17, 1986 96.6 95.43 -1.17 0 

July 5, 1987 133 122.64 -10.36 10 

July 19, 1990 94.1 89.6 -4.5 0 

July 1, 2007 83.5 84.8 1.3 36 

August 16, 2008 178 174.19 -5.81 9 

 

 

Figure 6 and Table 2 show that the simulated flood process was basically the same 

with the measured situation. In the recession phase, the simulated results were slightly 

faster than the measured results. The minor deviation does not affect the computing 

accuracy of critical rainfalls, because critical rainfall mainly depends on the peak flow 

and the situation of the rising phase. Compared with the measured results, the simulated 

floods rose fast and reached the peak flow early at a low volume. As a result, the 

simulated critical rainfalls were slightly below the measured values. For safety reasons, 

the slightly lower critical rainfalls are safer. Overall, the geomorphic-based R-V GIUH 

model enjoys a high accuracy in runoff generation calculation, and the simulated results 

are suitable for the simulation of the flood process and the computation of the critical 

rainfalls. 
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Analysis of calculated critical rainfall of each event 

Two typical prewarning periods, namely 1 h and 3 h, were selected according to the 

rainstorm features, watershed area and underlying surface of the target region. The 

critical rainfall of 16 measured floods in the Peihe River between 1982 and 2013 were 

calculated (Table 3). To verify the accuracy of the critical rainfall calculation by R-V 

GIUH, the critical rainfalls were compared with the actual rainfalls in the prewarning 

periods to see if flash flood prewarning is necessary, and the prewarning was verified 

based on whether the actual flow reached the prewarning flow. 

 
Table 3. Calculated and measured results on critical rainfall of each event 

Prewarning 

periods 
Time 

Measured 

discharge (m3/s) 

Total rainfall of 

periods (mm) 

Critical 

rainfall (mm) 

Prewarned 

or not 

Correct 

or not 

1 h 

1982/07/19/09 186 54.4 38.25 Y  

1983/09/16/03 73.1 25.8 48.64 N  

1984/08/08/23 90.31 36 76.16 N  

1985/07/13/08 46.4 25.9 33.29 N  

1986/07/18/01 93.86 31.2 29 Y  

1987/07/06/01 121.59 36.6 26.72 Y  

1988/09/09/01 55 10.6 69.41 N  

1990/07/19/16 78.6 29.9 78.82 N  

1991/07/03/13 60.7 17.5 23.26 N  

1993/06/21/13 37.1 23 21.38 Y  

1995/04/22/05 32.1 22.4 81.61 N  

1996/07/14/17 104 23.2 16.70 Y  

1998/07/02/20 48.1 32.8 29.93 Y  

1999/06/27/14 34.4 10.4 56.4 N  

2000/06/29/01 59.8 26 84.01 N  

2002/06/19/19 101.0 34 33.23 Y  

3 h 

1982/07/19/09 186 58.9 41.66 Y  

1983/09/16/03 78.2 37.8 61.1 N  

1984/08/08/23 90.31 75 94.7 N  

1985/07/13/10 51.8 42.9 39.5 Y  

1986/07/18/01 93.86 38.8 33.9 Y  

1987/07/06/01 133 45.2 41.6 Y  

1988/09/09/01 66.2 22.3 96.4 N  

1990/07/19/16 78.6 59.2 91.34 N  

1991/07/03/13 60.7 43.6 77.2 N  

1993/06/21/13 37.1 45 39.7 Y  

1995/04/22/06 45.6 41.6 101.3 N  

1996/07/14/17 104 55.5 43.68 Y  

1998/07/02/20 48.1 42.3 44.34 N  

1999/06/27/14 34.4 25.1 61.7 Y  

2000/06/29/02 63 38 98.4 N  

2002/06/19/20 147.00 66 57.63 N  

Y: there is prewarning; N: there is no prewarning; : the prewarning is correct; : the prewarning is 

incorrect 
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Table 3 shows that two prewarning based on the 1 h and 3 h critical rainfalls were 

incorrect, putting the pass rate at 87.5%. The failed cases were analyzed, revealing that 

the critical rainfalls deviated slightly from the actual rainfalls. The deviation falls within 

the error tolerance. Overall, the R-V GIUH outputted accurate critical rainfalls. 

 

Dynamic critical rainfall models and accuracy test 

According to the disaster-causing mechanism of flash flood, the occurrence of flash 

flood in a region not only depends on the preceding rainfall, cumulative rainfall and 

rainfall intensity, but also on rainfall distribution and the bottom water of the river. The 

latter two factors are already reflected by the cumulative rainfall and the critical rainfall 

of each event, respectively. Hence, our dynamic critical rainfall model only considers 

the preceding rainfall (antecedent moisture), cumulative rainfall (the total rainfall from 

the start to a moment before the prewarning) and rainfall intensity (the rainfall of a 

period before the prewarning). 

In light of the critical rainfall calculation of the said 16 floods, the preceding rainfall, 

cumulative rainfall and rainfall intensity were taken as the inputs, and the critical 

rainfall as the output. The first 12 floods were used as calibration samples and the last 4 

as test samples. Then, the prediction model was created in different scales through 

RBFNN training to predict the dynamic critical rainfall. The simulated results are 

contrasted with the actual results in Figure 7. 

 

 

Figure 7. Simulated results of dynamic critical rainfall prediction 

 

 

Figure 7 shows little difference between the simulated and calculated values, 

indicating that our model is suitable for the prediction of dynamic critical rainfall. To 

further verify its applicability, the model was adopted to predict the dynamic critical 

rainfalls of another 6 floods, and the results were also tested by the actual prewarning 

results (Table 4). The flood-causing flow inversion based on analytical calculation of 

RGC was introduced to determine the static critical rainfalls that only considers the 

preceding rainfall and to issue prewarning for the 1 h and 3 h periods, aiming to confirm 

the completeness of our indices and the superiority of our model. The calculated results 

are listed in Table 4. 

It can be seen from Table 4 that all dynamic critical rainfall prewarning for the 1 h 

period were successful, while five out of the six prewarning for the 3 h period were 

successful, putting the pass rate at 83.3%. By contrast, the pass rates of static critical 
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rainfall prewarning were 66.6% and 50%, respectively. In fact, the RBF-based dynamic 

prediction was more accurate than the contrastive calculation method. To sum up, the 

R-V GIUH-based critical rainfall prewarning is of high accuracy, and the RBFNN-

based dynamic prediction model thus established does well in the forecast of the critical 

rainfall. 

 
Table 4. Verification of the results predicted by our dynamic critical rainfall model 
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Pd/mm 
Prewarned 

or not 

Correct 

or not 
Ps/mm 

Prewarned 

or not 

Correct 

or not 

1 h 

2003/07/08/18 137.0 28.7 25.3 Y √ 45.8 N × 

2004/07/18/06 69.6 19.1 43.4 N √ 67.0 Y × 

2005/09/02/15 32.7 15 24.5 N √ 47.5 N √ 

2007/07/01/17 66.2 17.1 62.3 N √ 52.0 N √ 

2008/08/16/08 161 38.6 33.2 Y √ 32.1 Y √ 

2010/07/16/21 43.2 20 51.1 N √ 32.1 N √ 

3 h 

2003/07/08/19 163.00 33 33.4 N × 63.0 N × 

2004/07/18/06 69.6 47 76.7 N √ 83.4 Y × 

2005/09/02/16 46.3 19 27.2 N √ 68.3 N √ 

2007/07/01/18 66.2 32.3 89.5 N √ 75.4 N √ 

2008/08/16/09 178 53 41.7 Y √ 56.7 N × 

2010/07/16/21 43.2 26 60.4 N √ 56.7 N √ 

Pd: the critical rainfall is dynamic; Ps: the critical rainfall is static; Y: there is prewarning; N: there is no 

prewarning; : the prewarning is correct; : the prewarning is incorrect 

Discussion 

The critical rainfall is an important tool for the prewarning of flash floods. It is very 

meaningful to probe into this index. In this paper, the critical rainfall is investigated 

based on the GIUH and the RBFNN, yielding fruitful results. However, there are some 

shortcomings with our research. Next, the research findings are compared with the 

relevant studies in two aspects. 

Our research discovers that, while the GIUH-based simulation output close-to-reality 

flood process, the simulated peak flow appears earlier and smaller than the measured 

data, causing the underestimation of the critical rainfall. This conclusion agrees well 

with the research of Tang (2017) and Wang et al. (2018). Meanwhile, the test results in 

Table 3 show a good overall accuracy, but the underestimated critical rainfall may lead 

to wrong prewarning of several floods that do not cause disasters. New solution should 

be looked for to solve this problem. 

Currently, the flash floods can also be simulated by distributed hydrological models, 

such as the geomorphology-based hydrological model (GBHM) (Liu et al., 2010), the 

Xin’anjiang (XAJ) model (Ye et al., 2014), the Hydrologic Engineering Center’s 

Hydrological Modeling System (HEC-HMS) model (Liu, 2016; Guan et al., 2017), and 

the grid XAJ model (Liu et al., 2017). These models can simulate the flood process 
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more realistically and accurately than the GIUH-based model, and can also be adopted 

to compute the critical rainfall. Nonetheless, most distributed hydrological models have 

lots of parameters, which need to be determined by a long series of data. In this respect, 

the GIUH-based method enjoys certain advantages with relatively few and easy-to-

obtain parameters. In future research and applications, the flood computing method 

should be selected according to the local data. 

In addition, the prewarning results of rainfall events differed with time scales, as 

acquired through the calculation of critical rainfall of each event. For example, the 

1998070220 rainfall event was prewarned incorrectly on the 1 h scale and correctly on 

the 3 h scale, while the 1985071310 rainfall event was prewarned incorrectly on the 3 h 

scale and correctly on the 1 h scale. The results are consistent with the findings of Guo 

et al. (2016). Analysis shows that the prewarning effect of short, heavy rainfall is 

negatively correlated with the time scale. In actual application, the critical rainfalls on 

different time scales should be considered fully in the prewarning process, such as to 

reduce false warning and increase prewarning accuracy. 

Besides flood computation, the dynamic relationship between the critical rainfall and 

the influencing factors also bears on the prewarning of flash floods. Many scholars (Liu 

et al., 2010; Ye et al., 2014; Guan et al., 2017; Guo et al., 2016) have explored this 

relationship via linear regression and correlation analysis. These methods can output 

accurate dynamic critical rainfall. However, none of them differentiate between 

influencing factors on their impact over the critical rainfall. In fact, the influencing 

factors are simply superimposed in the relevant studies. To further improve the 

computing accuracy of critical rainfall, this paper sets up the dynamic relationships 

between critical rainfall and multiple influencing factors based on the RBFNN. The 

model was proved accurate in prewarning through the analysis on its calibration, test 

and prediction results. However, the RBFNN, as a black box model, cannot clearly 

quantify the degree of impact of each influencing factor on the critical rainfall. The 

prediction results only confirm that the critical rainfall is affected in different degrees by 

various factors, namely, preceding rainfall, rainfall process and the bottom water of the 

river, and the relationships between critical rainfall and these factors are complex. To 

enhance the accuracy of flash flood prewarning and rationalize decision-making for 

disaster prevention and mitigation, it is necessary to further explore how these factors 

affect the dynamic variation in critical rainfall. 

Conclusions 

The geomorphic-based R-V GIUH runoff convergence model has a few easy-to-

obtain parameters and requires no detailed hydrological or geomorphic data. It is 

suitable for computing the runoff convergence of flash flood in regions lacking data on 

the disaster. Besides, the model can output good results on runoff convergence. In 

particular, the simulated flow and time of flood peaks in the rising phase, which is 

important to the determination of critical rainfall, are close to the measured results. As a 

result, the model can predict the critical rainfall very accurately. 

The critical rainfall is jointly determined by such factors as preceding rainfall, 

cumulative rainfall and rainfall intensity. The RBFNN-based dynamic critical rainfall 

prediction model is a desirable tool to describe the complex relationship between the 

critical rainfall and its influencing factors, laying a good basis for accurate prewarning. 
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