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Abstract. This paper aims to enhance the accuracy and reduce the cost of the fusion of multi-source 

remote sensing data. For this purpose, the existing multi-source remote sensing data fusion methods were 

reviewed in detail. Then, a new back propagation (BP) neural network (BPNN) fusion algorithm for the 

groundwater was put forward based on hybrid soft computing. Using the function approximation ability 

of BP neural network, it was combined with the Kalman filter to form an optimization method. The BP 

neural network was coupled with the particle swarm optimization (PSO) algorithm into the PSO-BPNN-

EKF data fusion algorithm. On this basis, the least squares support vector machine (LSSVM) was 

introduced to create the LSSVM-PSO data fusion algorithm. Through simulation experiments, it is 

learned that the proposed algorithm can effectively fuse the multi-source remote sensing data on 

groundwater, especially in the case of big data. The research findings shed a new light on the fusion of 

remote sensing data collected by multiple sensors. 

Keywords: groundwater, Kalman filter, data fusion, particle swarm optimization, hybrid soft computing 

Introduction 

Back propagation (BP) neural networks (BPNNs) are neural network models based 

on the cross section of machine learning and neural networks. BP neural networks are 

computing systems vaguely inspired by the biological neural networks that constitute 

animal brains (Costantiti et al., 1997). A BPNN is based on a collection of connected 

units or nodes called artificial neurons which loosely model the neurons in a biological 

brain. Each connection, like the synapses in a biological brain, can transmit a signal 

from one artificial neuron to another. For any remote sensing platform, it is impossible 

to fully reflect the features of the ground target through the remote sensing data 

acquired by a single sensor. Facing multi-source spatial data, the geographic 

information system (GIS) data acquisition has become a popular choice. However, the 

resulting data resources differ in coordinate system, scale standard and storage format, 

making it difficult for data integration and sharing. The traditional data fusion algorithm 

requires a more accurate mathematical model of the object, which is not suitable for 

complex models, by using BP neural network algorithm to realize multi-sensor data 

fusion, the prior requirement of object is not high, and it has strong adaptive ability 

(Pohl and Van Genderen, 1998). Against this backdrop, the researchers on remote 

sensing have paid much attention to the removal of redundancy in data acquired by 

multiple sensors and improve data fusion and sharing. In light of this, this paper 

attempts to develop an effective multi-source remote sensing data fusion technology 

based on BP neural network, using BP neural network to fuse sensor data can improve 

the stability and accuracy of sensors. 
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Traditional neural network training algorithm is slow in convergence and easy to fall 

into local optimum. In recent years, swarm intelligence optimization algorithms such as 

particle swarm optimization (algorithm) have better global convergence performance 

and can be used to train neural network parameters and structures. This model 

mechanistically reflects the natural process but fails to reflect the interaction between 

man and nature. To solve the problem, the data fusion technology, a desirable tool for 

estimation and identification, can be introduced to the model, allowing the timely and 

reliable acquisition of multi-format information from multiple sources like experts and 

the multimedia. Currently, the key data fusion technologies include the estimation 

technique, fuzzy set theory, clustering analysis, template method, human-computer 

interaction, expert system, multimedia technology, neural network method, distributed 

database technology and parallel processing technology (Li et al., 2018; Neelapu et al., 

2018; Bhoi, 2017; Li, 2017; Liu and Xu, 2017; Hu et al., 2017; Zhang et al., 2010). 

Coupled with geophysical and geological databases, these technologies can increase the 

constraint recognition of in remote sensing applications, allowing them to describe the 

spatial geometry of the target from different aspects. 

For efficient and accurate multi-source remote sensing data on groundwater, this 

paper creates a BP neural network fusion algorithm. Specifically, the extended Kalman 

filter (EKF) was adopted to sample the prior information and coupled with the particle 

swarm optimization (PSO) model and BP neural network (BPNN) into the PSO-BPNN-

EKF data fusion algorithm. On this basis, the least squares support vector machine 

(LSSVM) was introduced to create the LSSVM-PSO data fusion algorithms. 

Materials and methods 

Neutral network data fusion methods 

Neural network model 

The typical three-layer neural network model is given in Figure 1, BPNN is a multi-

layer feedforward network trained according to error back propagation algorithm. This 

algorithm can learn and store a great deal of mapping relations of input-output model, 

without the need to disclose in advance the mathematical equation that describes these 

mapping relations. The learning rule is to adopt the steepest descent method in which 

the back propagation is used to regulate the weight value and threshold value of the 

network to achieve the minimum error sum of square (Li et al., 2018). The structures of 

the BP neural networks are relatively mature in both network theory and performance. 

The distinctive advantage is that it has a strong nonlinear mapping capability and 

flexible network structure. In this paper, the BPNN is optimized using the PSO to speed 

up the convergence and avoid the local minimum trap. 

 

Optimization of neural network parameters 

The error correction algorithm is often used in the training process of feedforward 

neural networks. The most typical error correction algorithm is BP algorithm. The 

algorithm first generates a set of weights randomly, and then calculates the weight 

correction by gradient descent method until the training error reaches the target 

precision range. But the most obvious defect of this algorithm is slow convergence and 

sometimes even no convergence. 
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Figure 1. Structure diagram of three-layer neural network model 

 

 

This paper used the optimization of neural network parameters translation method to 

build the training dataset. Using BP neural network’s function approximation ability, 

BP neural network and Kalman filter are combined to form an estimator, which can 

make full use of sensor information from different noise pollution, improve estimation 

performance while maintaining estimation. The filtered computational structure is as 

simple as possible. Before network training, we must first normalize the data to ensure 

that the output of the network layer is not too small. What the initial value of the center 

vector pi is determined by training samples, and where the pi = (pi1, pi2, pi3, pi4,). If it 

belongs to the training sample set of the first kind of data change, It is represented as 

{S1, S2,…, Sm}, and the initial value of each element in the centre vector p1 is the 

average value of each element in the input vector of these samples. Firstly, take the 

logarithm of the sensor information from different noise pollution data which is denoted 

as is shown in Figure 2. 

 

 

Figure 2. Neural network fusion data 

 

 

KF data fusion 

The traditional filtering algorithms mainly target the state variables of the system to 

be processed. Their performance depends on the system model, the input signal and the 

measured signal (Ryu and Huber, 2007). For these algorithms, form transformation is 

required to get the estimates of model parameters. In other words, the state equation and 

output equation need to be transformed from the standard form via bit filtering, with 

unknown parameters as the state variables. The transformation equation can be 

expressed as Equation 1: 
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In a dynamic environment, the Kalman filter is often employed thanks to its real-time 

integration of data. The filter can describe linear differential equations of a discrete-time 

system. Let xRn be the state variables. Then, the state equation can be expressed as 

Equation 2: 

 

 1 1 1 1( , , )k k k k k kx f x a − − − −= +  (Eq.2) 

 

The measured variables zRm can be obtained as Equation 3: 

 

 ( , )k k k k kz h x  = +  (Eq.3) 

 

In the above equations, ak-1 is the system noise at time k–1; βk is the measured noise; 

ωk and vk are two random variables representing the excited noise and the observed 

noise, respectively; μk and ωk are the noises of the driving function and zero-mean 

normalization, respectively; xk and zk are the nonlinear functions of the state variables 

and measured variables, respectively. 

The EKF is an extension of the Kalman filter. The basic idea of the EKF is to convert 

nonlinear vector function f(.) and nonlinear system model f(.) into linear filter values. 

Following this train of thoughts, Equations 2 and 3 can be expanded into a Taylor series 

(Eq. 4) to obtain the linear model of the system. Then, the basic equations of the 

Kalman filter can be applied to solve the nonlinear filtering problem. 
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Particle swarm optimization algorithm 

The PSO is a computational method that optimizes a problem by iteratively trying to 

improve a candidate solution with regard to a given measure of quality. It solves a 

problem by having a population of candidate solutions, here dubbed particles, and 

moving these particles around in the search-space according to simple mathematical 

formulae over the particle’s position and velocity. Each particle’s movement is 

influenced by its local best-known position but is also guided toward the best-known 

positions in the search-space, which are updated as better positions are found by other 

particles. This is expected to move the swarm toward the best solutions (Quiroga et al., 

2013). Below is a brief description of the standard PSO algorithm. 

Suppose there are a d-dimensional search space and a population containing Np 

particles. Let  be a d-dimensional vector representing the initial 

position of particle i of the t-th generation, let the vector  be the 

velocity of particle i, i.e., the rate of change in the position, and let 
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 be the best known position of particle i of the t-th generation. 

Then, the velocity and position of particle i can be obtained by updating Equations 5 

and 6 below. 
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 ( 1) ( ) ( 1)ij xj ijx t x t v t+ = + +  (Eq.6) 

 

where t is the iteration number; ω is the inertia coefficient; c1 and c2 are acceleration 

coefficients; rand1 and rand2 two uniformly-distributed random independent numbers in 

[0, 1]. The values of ω, c1 and c2 value should be determined according to the specific 

problem. 

The performance of the PSO can be greatly enhanced if ω decreases linearly with the 

increase in the number of iterations as Equation 7: 
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where ωmin and ωmax are the maximum and minimum weighting factors, respectively; 

iter is the current iteration number; itermax is the maximum number of iterations. The 

flight speed vi falls between the maximum and minimum weighting factors. This 

constraint condition ensures the convergence to the optimal solutions and improves the 

global search ability of the PSO. 

 

LSSVM data fusion methods 

The SVM (Jalalkamali et al., 2011) is a supervised learning model with associated 

learning algorithms that analyze data used for classification and regression analysis. It is 

known for its excellent generalization in the case of small samples. The SVM learning 

has been commonly used for the analysis on spatial data (Babaoğlu et al., 2010; Awan 

et al., 2013). The traditional SVM aims to solve convex quadratic optimization 

problems. However, the kernel matrix of the SVM has to occupy a large storage 

capacity, and the solution becomes less efficient when the sample size is excessively 

large. For this reason, the LSSVM (Zhang, 2011; Üstün et al., 2005) has been developed 

to improve the optimization effect. The new model replaces the traditional inequality 

constraints with an equality equation in the construction of the optimal objective 

function. Thus, the optimization process is transformed into the solution of a set of 

linear equations. In this way, the LSSVM achieves twice the efficiency of the traditional 

SVM. Despite the reduced cost, the LSSVM faces the loss of sparsity of the traditional 

method, owing to the use of   - insensitive loss function. 

Suppose there is a sample containing n training sets {(x1,y1),(x2,y2),…,(xN,yN)}, where 

xkRp the k-th input vector is. Assuming that the dataset is linearly separable, there 

must exist a linear classifier y(x) = ωTφ(x) + b in the input space. If an optimization 

problem is nonlinear and separable, a nonlinear function φ(.) can be adopted to map the 
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raw data space into a high-dimensional feature space, before looking for the 

classification surface-dimensional feature space y(x) = ωTφ(x) + b. 

To obtain the optimal high-dimensional plane, the inequality equation needs to be 

introduced to the traditional SVM as Equation 8: 
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where γ is the spacer; ξ is the number of training samples; xi is the vector of the i-th 

training sample; w is the weight vector; b is the threshold; yi are the marked samples 

( ); ωi is the class of the i-th sample. 

Then, the Lagrange function can be established as Equation 9: 
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Unlike the traditional SVM, the LSSVM is built with equality constraint instead of 

the inequality constraint. Hence, the optimization problem can be expressed as 

Equation 10: 
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Then, the structure of the Lagrangian dual problem can be expressed as Equation 11: 
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According to the optimization conditions, the partial derivatives of w, b, ξ and a can 

be obtained as Equation 12 and set to zero. 
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Under the above conditions, the kernel function can be defined as 

k(xi,yi) = ψ(xi)ψ(yi). Then, the optimization problem can be transformed into solving the 

linear equations as Equation 13. 
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The above linear equations can be solved by the LSSVM classifier as Equation 14: 
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The radial-basis function (RBF) can be selected as the kernel function, as 

Equation 15: 
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Based on these parameters, the penalty factor C and kernel function parameters σ can 

be obtained through the common optimization procedure. 

 

BP neural network data fusion model 

Soft computing was proposed by Prof. Zadein in the 1990s to solve uncertainty 

problems through fuzzy and intelligent technologies. The method is capable of tackling 

one or more complex datasets in realistic environment. Unlike traditional hard 

computing, soft computing does not pursue the exact solution, considering the 

inaccuracies in real-world problems and the high cost of the traditional method (Zhang 

et al., 2013). Instead, it pursues the next best solution when it is impossible or extremely 

difficult to obtain the optimal solution. 

So far, soft computing has been extensively applied to data fusion and classification. 

This technology can combine the member attributes of fusions sequence into different 

logic structures (i.e. series structure, mosaic structure and parallel structure), depending 

on the specific data. Here, the parallel structure is adopted for fusing the remote sensing 

data on groundwater. 

 

PSO-BPNN-EKF 

In this paper, the PSO-BPNN-EKF optimization algorithm is proposed by optimizing 

the EKF state equation with the PSO, the algorithm uses PSO instead of the parameters 

in BPNN training algorithm and optimizes BP parameters. Each particle is a vector 

representing a set of parameters. The process of finding the global optimum is the 

process of obtaining the optimal parameters. Before the optimization, the particle set 

converges to the high likelihood area, which is far away from the true state. This 
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problem is solved by the optimization, together with particle degeneration and in 

accuracy prediction. The PSO-EKF algorithm consists of the following steps: 

 

(1) Initialization 

Let N be the number of particles, and p(x0) be the initial population. Set the initial 

values of parameters as Δx0 = 0, p0 = Cx0 and Cx0 = 1.5. 

 

(2) Importance sampling 

Adjust the velocity and position of each particle 

, and update the state of the particle according to 

the EKF algorithm. In other words, estimate the state of the particle 

 at time k according to the EKF importance sampling algorithm. 

Find the mean  and variance  of the particle set . Update the weight of the 

particles in the set  according to the importance of the density function 

. 

 

(3) Recompiling 

Estimate the posterior probability of the target state at time k , and 

find the current global optimal solution . For k = k + 1, return to Step (2) and estimate 

the posterior probability of the target state at the next time. 

 

PSO-based LSSVM parameter optimization 

The LSSVM parameters γ and σ directly impact the prediction accuracy. Normally, 

the parameter space is search exhaustively to optimize these two parameters. However, 

it is difficult to determine the reasonable range of each parameter. To solve the 

difficulty, the LSSVM parameters were optimized by the PSO through the following 

steps (Yu et al., 2012; Anand et al., 2013). 

(1) Initialize the PSO parameters, including population size, learning factor, 

maximum number of iterations, and the initial velocity and position of the particles. 

(2) Predict the particle vector of each LSSVM learning sample, and obtain the 

current position, prediction error and fitness of each particle. Then, compare the current 

fitness of each particle with the best-known fitness. If the former is better, it should be 

selected as the optimal position of the particle. 

(3) Compare the optimal position of each particle with the best known global 

position. If the former is better, it should be selected as the optimal global position. 

(4) Calculate the inertia weight according to Equation 7 and update the particle 

velocity and position according to Equations 5 and 6, respectively. 

(5) Terminate the search process if the termination condition is satisfied; otherwise, 

return to Step (2) and start a new round of search. 

Results 

The study area is Yulin Prefecture in northern China’s Shaanxi Province. There are 

12 river basins in the prefecture, with a perennial mean runoff of 1.9446 billion m3. 

Under the reliabilities of 50%, 75% and 95%, the annual runoff is 1.847, 1.504 and 
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1.136 billion m3. Specifically, the perennial mean runoff of the 10 outflow basins stands 

at 1.8099 billion m3. Under the reliabilities of 50%, 75% and 95%, the annual runoff is 

1.7194, 1.4034 and 1.0660 billion m3. The perennial mean runoff of the other 2 inflow 

basins amounts to 0.1347 billion m3. Under the reliabilities of 50%, 75% and 95%, the 

annual runoff is 0.1277, 0.1001 and 0.0699 billion m3. The central districts, including 

Shenmu County, Fugu County, Yuyang District and Hengshan County, have a perennial 

mean runoff of about 1.557 billion m3. Under the reliabilities of 50%, 75% and 95%, the 

annual runoff is 1.477, 1.201 and 0.907 billion m3. The peripheral districts like Jingbian 

County have a perennial mean runoff of about 0.388 billion m3. Under the reliabilities 

of 50%, 75% and 95%, the annual runoff is 0.370, 0.303 and 0.327 billion m3. The 

annual runoffs are recorded in Table 1. The water quality of major rivers is given in 

Table 2. 

 
Table 1. Annual runoffs in Yulin Prefecture 

River basin 
Basin area 

(km2) 

Average 

annual runoff 

(million m3) 

Average 

runoff depth 

(mm) 

Different frequencies annual runoff 

(million m3) 

50% 75% 95% 

Huangfuchuan 2 827 1. 546 54. 69 1.326 0.868 0.498 

Shimizu River 321 0. 183 57. 01 0.160 0.111 0.067 

Sichuan Gushan 261 0. 195 74. 71 0.171 0.112 0.064 

Kuye River 4 629 3. 096 66. 88 2.876 2.146 1.409 

Wudinghe River 9 396 4. 260 45. 34 4.133 3.478 2.708 

Total 17434 9.28 298.63 8.666 6.715 4.746 

 

 
Table 2. Groundwater quality in the study area 

River 
PH 

value 

Dissolved 

oxygen (mg/L) 

Oxygen 

consumption 

(mg/L) 

Total hardness 

(Germany 

degrees) 

Salinity 

(g/L) 

Lu River (Hengshan) 7.6 2.3 5.4 14.0 0.92 

Wudinghe River (Xiangshui) 7.6 3.7 2.4 10.1 0.77 

Wudinghe River (Baijia Chuan) 8.2 6.3 1.4 12.1 0.53 

Tuweihe (upstream) 7.4 4.3 2.1 8.26 0.23 

Tuweihe (downstream) 7.9 3.2 2.9 8.27 0.20 

Kuye River (upstream) 7.4 3.1 3.3 9.81 0.28 

Kuye River (midstream) 7.9 6.1 4.1 11.36 0.32 

Kuye River (downstream) 7.4 5.1 4.5 9.53 0.26 

Jia Lu River 7.9 4.2 3.1 6.7 0.22 

Bali River 7.3 5.5 3.2 8.8 0.25 

 

 

To validate the proposed PSO-BPNN-EKF algorithm, the performance of the PSO-

BPNN-EKF and PSO-SVM were contrasted with that of the KF, the EKF, the PSO-KF, 

the LSSVM-PSO and the BP- PSO-BPNN-EKF through 100 Monte-Carlo simulations 

with δ = 2 at the number of particles of 50, 100 and 150. The results of different 

algorithms are shown in Table 3. 
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Table 3. Results of contrastive algorithms 

Filter PF EPF PSO-EPF PSO-SVM PSO-BPNN-EKF 

N = 60 Variance 4.199 3.823 2.310 2.121 2.112 

N = 100 Variance 3.523 3.123 2.132 2.092 2.093 

N = 160 Variance 3.223 3.121 2.622 2.122 2.031 

N = 260 Variance 2.133 1.987 1.232 1.154 1.131 

 

 

Considering the good nonlinear fitting effect of the RBF, the function was adopted as 

an improved kernel for the LSSVM. The selection of parameters is essential to the 

performance of the LSSVM model. In this paper, the parameters are determined by the 

improved PSO as: number of particles N = 25, the maximum number of iterations 

Gmax = 100, the learning factors c1 = 1.5 and c2 = 1.5, the inertia weight = 0.9. Then, the 

LSSVM-PSO model was simulated on the Matlab. The particle position was updated 

constantly until the termination condition was satisfied. In this way, the optimal RBF 

parameters σ was determined as 0.5, and the normalization parameter c was identified as 

60. Next, the optimal parameters were adopted for the fusion of groundwater data by the 

LSSVM-PSO model. The results are presented in Figure 3. And then we compare the 

experimental results of data fusion between LSSVM-PSO and PSO-BPNN-EKF 

algorithm, as shown in Figure 4. In order to more clearly observe the change of the 

value of the sum of squares of errors, Figure 5 has trained the variation of the sum of 

error squared sum of the PSO-BPNN-EKF algorithm. 

Discussion 

According to lab analysis, the groundwater quality in the central districts is as 

follows: the pH ranges in 7.6~8.3, the total hardness falls in 10.1~17.3 (°D), the salinity 

belongs to 0.33~0.92 g/L, and the poisonous contents like mercury, arsenic and 

chromium VI are minimal or non-detectable. Overall, the quality of the groundwater 

meets the Standards for Drinking Water Quality (GB5749-2006) and Standards for 

Irrigation Water Quality (GB 5084-2005). In the peripheral district, the groundwater in 

a few areas is not suitable for drinking or irrigation, as its hardness and salinity are 

higher than the specified ranges. 

 

 

Figure 3. Comparison of neural network water resources data volume learning and testing 
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Figure 4. Comparison of data prediction results between LSSVM-PSO and PSO-BPNN-EKF 

algorithm 

 

 

 

Figure 5. Variation of square sum of errors in training neural network 

 

 

As shown in Table 2, the groundwater in the study area has simple chemical 

compositions. In the loess area, the groundwater is of the HCO3-CaMg type with a 

salinity below 0.5 g/L; in the plain areas, the groundwater mainly belongs to the ClSO4-

N8 type with a salinity between 1.0 g/L and 18.46 g/L. 

As shown in Table 3, when the number of particles N = 100, the PSO-SVM achieved 

a much better performance than the other algorithms, as evidenced by the extremely low 

error. This means the PSO optimization of EKF state equations increases the particle 

diversity and enhances the filtering accuracy. Overall, the proposed PSO-BPNN-EKF 

and PSO-SVM boasted the best performance, followed by the PSO-BPNN-EKF, the 

EKF and the LSSVM. The ranking demonstrates the effectiveness of the proposed 

algorithm. 

Conclusions 

Real-time monitoring of groundwater resources with multiple sensors is a difficult 

dynamic control problem, due to the large scale and heterogeneity of multi-source data. 

The existing models cannot satisfactorily reduce the dimensions of the monitoring data. 

Therefore, this paper attempts to create an innovative approach for dynamic monitoring 
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of groundwater based on large data. For this purpose, a new data fusion algorithm was 

proposed, aiming to reduce the data size and energy consumption in the fusion process. 

Inspired by the superiority of artificial neural networks, the rough set theory and the 

PSO were employed to reduce the complexity of the proposed algorithm. Through 

several simulations, it is proved that the proposed algorithm can process data more 

efficiently than the BPNN and the PSO, two popular data processing methods. The 

excellent performance is attributable to the reduction of data table in the case of big 

data. The research findings shed new light on the fusion of remote sensing data 

collected by multiple sensors. Further studies are expected to understand the 

connotation of the problem of big data fusion, in the era of big data, the analysis and 

mining for the multi-source remote sensing data is a research field and which attracts 

much attention. To effectively learn the characteristics of massive, low-quality, 

heterogeneous, high-dimensional and fast-changing big data, there are still a series of 

problems and challenges. Our study provides a corresponding multi-source remote 

sensing data fusion algorithm for the incompleteness of multimodal data, real-time 

processing and multi-source data fusion. 
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