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Abstract. In this paper, a catfish-effect multi-objective particle swarm optimization algorithm (CE-

MOPSO) is proposed for optimizing the coordinative flow-sediment scheduling in a reservoir. In the 

proposed CE-MOPSO, the driven effect of catfish particles is introduced to improve the convergence and 

diversity of solutions. The performance of the proposed CE-MOPSO was verified using a classical bi-

objective test function (ZDT3), and it was found that compared with MOPSO and Sigma-MOPSO 

algorithms, the CE-MOPSO showed better convergence to the true Pareto optimal fronts, and provided 

better diversity and uniformity for the Pareto frons with smaller values of convergence index and 

diversity index. After the successful validations in simulation studies, the proposed approach was then 

applied to a real case study in the Three Gorges Reservoir in China. Our results showed that the obtained 

Pareto solution set effectively approximated the true Pareto optimal frontier during the process of 

evolution. The scheduling results of CE-MOPSO revealed the relationship between power generation and 

sediment deposition in ten years and can be used to develop reservoir operation policies and plan 

sediment trapping and flow operations in real time. These results suggest that the proposed CE-MOPSO 

approach is efficient and effective in managing multi-objective water resources and hydrologic problems. 

Keywords: flow-sediment optimal scheduling, particle swarm optimization, catfish’s driven, Pareto 

optimal solution 

Introduction 

Reservoir comprehensive utilization and sediment sluicing are contradictory in 

reservoir operation and management. Sediment deposition can reduce reservoir storage 

capacity, and subsequently cause decreases in the efficiency of flood control, 

hydropower generation, and navigation (Yoon, 1992; Yang, 2003). Therefore, the 

coordinated flow-sediment regulation is very important for effective and successful 

reservoir operation (Zhu, 1997; Han, 2003; Peng et al., 2014). 

The aim of coordinated flow-sediment regulation in a reservoir is to seek maximum 

comprehensive benefits under the minimum sediment deposition. This can be 

considered as a multi-objective optimization problem (MOOP) with characteristics such 

as being multidimensional, dynamic, strong coupling, and nonlinear. In most previous 

studies, this multi-objective problem was usually solved by being transformed into a 

single-objective problem using vector optimization technologies, such as weighted 

method (Lian et al., 2004; Xiao et al., 2013), constraint method (Zhang and Feng, 1988; 

Xiang et al., 2010), Bayesian model averaging method (Duan et al., 2007; Yan and 

Moradkhani, 2014; Yan and Moradkhani, 2016), decomposition-polymerization method 

(Peng et al., 2004, 2014) and so on. However, the values of weight coefficients and 

constraint thresholds should be set subjectively in advance during the process of solving 

the model. A single set of fixed weights or constraint thresholds may result in only local 

optimum on the Pareto front. To obtain the global Pareto optimum, we need to run a 
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good number of simulations to examine all the weight combinations or constraint 

threshold (Reddy and Kumar, 2009). 

As an alternative, multi-objective particle swarm optimization algorithm (MOPSO) 

has been shown as a useful tool for solving large and complex MOOPs, due to its 

stochastic and implicitly parallel properties to search for multiple local optimal 

solutions and consequently, to obtain the Pareto optimal solutions set. However, the 

algorithm of MOPSO has some disadvantages including premature convergence, 

reduced individual diversity, and enmeshed local optimum (Reyes-Sierra and Coello, 

2006). To overcome these issues, several improved MOPSO have been proposed. For 

instance, Mostaghim and Teich (2003) used a Sigma method in MOPSO for searching 

the best local guides to speed up the convergence towards the true Pareto front with 

better distribution. Coello et al. (2004) used a constraint-handling mechanism and a 

special mutation operator to enhance exploration capability of MOPSO. Reyes-Sierra 

and Coello (2005) improved the MOPSO with the use of the Pareto dominance and a 

crowding factor to select the leaders. Leong and Yen (2006) suggested to use an 

adaptive local archive to promote swarm’s diversity and incorporated an adjusted 

population size to promote swarm’s competition. Branke and Mostaghim (2006) 

proposed a few strategies for the selection of global guides. Abido (2008) employed a 

clustering technique to adjust the optimal Pareto set size. Recently, the MOPSO has 

been increasingly applied in the field of water resources. Reddy and Kumar (2007, 

2009) presented an elitist-mutation MOPSO approach for solving optimal multipurpose 

reservoir operation problems. Azadnia and Zahraie (Azadnia and Zahraie, 2010) used 

non-domination sorting and crowding distance techniques in MOPSO and applied it to 

optimize reservoir operation with two objectives including water supply and sediment 

removal. Li and Lian (2008) improved the MOPSO with self-adjusting inertia weights 

and Pareto-optimal archive for optimizing the coordinate reservoir deposition and 

power generation in reservoir operation. Despite the advances in these studies, there is 

still room to improve the efficiency of MOPSO, and the application of MOPSO to the 

coordinative flow-sediment scheduling in a reservoir has remained a challenge. 

To further enhance the robustness of MOPSO, we propose a catfish-effect MOPSO 

algorithm (CE-MOPSO) in this paper. The catfish effect introduces a driven effect of 

catfish particles on individuals (i.e. the sardine particles), which was studied in the PSO 

algorithm and proven that the introduced catfish particle can improve the performance 

of the PSO (Chuang et al., 2008, 2011; Ji et al., 2011; De Souza et al., 2014). By taking 

advantage of such catfish effect, this paper incorporates catfish effect mechanism into 

the MOPSO algorithm. Different from the work in references (Chuang et al., 2008, 

2011; De Souza et al., 2014), in which catfish particles were added at the extreme points 

of the search region and replaced 10% of original sardine particles having the smallest 

fitness value, this paper suggests another way to generate catfish particles and a 

different way that catfish particles work. The proposed algorithm was applied to 

optimize the coordinative flow-sediment scheduling in a real reservoir. In summary, the 

main contributions of the proposed CE-MOPSO algorithm are as follows. 

(1) In the CE-MOPSO, the catfish particles are generated from the external archive, 

which is used to store the intermediate non-inferior solutions (i.e., elite particles with 

greater fitness value during the optimization process). Thus, the generated catfish 

particles have greater vigor and competitiveness than sardine particles. When the 

diversity of particle swarm is less than a defined threshold, catfish particles are added 

into the search region. The added catfish particles have driven effect on sardine 
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particles, which make the sardine particles escape from them. Thus, the sardine particles 

may jump out of the “locked” status and be guided to moving towards new area of the 

search space. This helps the MOPSO algorithm improve the diversity of the population, 

and converge fast towards true Pareto fronts in further generations. 

(2) The global optimal value of the sardine particle driven-influenced by catfish 

particles, is decided by the Sigma value of catfish particle, which is the second close to 

the Sigma value of sardine particle instead of the closest one. This contributes the CE-

MOPSO avoid trapping in the local optimal solutions caused by the Sigma method and 

finding the global optimal solution with deeper search and increased convergence 

speed. 

(3) The proposed CE-MOPSO performance is first compared with MOPSO (Coello 

et al., 2004) and Sigma-MOPSO (Mostaghim and Teich, 2003) algorithms through an 

optimization test with a bi-objective test function (ZDT3). The results show that the CE-

MOPSO have better performance in convergence and diversity. Then, the proposed 

algorithm is applied to solving the optimization of reservoir flow-sediment regulation in 

a case study. Results show that the proposed CE-MOPSO is able to obtain a well-

distributed Pareto optimal front, which can reflect the relationship between power 

generation and reservoir deposition. 

The remaining sections are organized as follows. In Section 2, we establish a 

reservoir flow-sediment optimal dispatching model. The proposed CE-MOPSO 

algorithm is elaborated in Section 3 and its performance is verified in Section 4 by 

comparing it with the MOPSO and Sigma-MOPSO algorithms. A case study of using 

the CE-MOPSO is presented in Section 5. Finally, we conclude the paper in Section 6. 

Materials and methods 

Materials 

The Three Gorges Reservoir (TGR) in China is taken up as a case study for 

analyzing non-inferior relationship between hydropower generation and sediment 

deposition. The Three Gorges dam is located in the upper reach of the Yangtze River, as 

shown in Figure 1. The TGR is the largest multi-purpose hydropower project in China, 

which has great benefits of flood controlling, power generation, navigation improving, 

water supply, etc. The TGR began to impound water on 1 June 2003, and was in full 

operation in 2009. The main features of the reservoir are given in Table 1. 

The storage capacity of TGR is 393 × 108 m3, and every 1 m increase in water head 

will bring TGR great benefit of power generation. Meanwhile, reservoir sedimentation 

is a serious issue in TGR operation and management, because it reduces TGR storage 

capacity and causes decreasing capability in flood control, hydropower generation, and 

navigation. Increasing power generation requires increasing the water head, which 

result in increase in sediment deposition. Power generation and reservoir sedimentation 

are contradictory in the TGR operation and management. Therefore, relationship 

between power generation and sediment trapping need to be revealed for effective 

reservoir operations. 

The hydropower generation and sedimentation of TGR were calculated based on the 

1961~1970 hydrological series. The time interval for the scheduling calculation is ten 

days in June to September and one month in other months. Therefore, the total number 

of time intervals is 20 in a year and 200 in ten years. The range of sedimentation 

calculation of the TGR was from Jiangjin to the dam site of the TGR, with the total 
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length of 689.2 km. 210 sections were set with average section spacing of about 

3,280 m. The typical cross-sections are also shown in Figure 1. 

 

 

Figure 1. Location of the studied area 

 

 
Table 1. Primary features of the Three Gorges Reservoir 

Reservoir parameters Quantity 

Total reservoir capacity (108 m3) 393 

Active capacity (108 m3) 165 

Flood control capacity (108 m3) 221.5 

Dam crest elevation (m) 185 

Normal water level (m) 175 

Flood limited water level (m) 145 

Lowest drawdown water level in dry season (m) 155 

Installed capacity (106 kW) 22.40 

Mean annual power generation (109 kW·h) 847 

 

 

Model formulation for reservoir flow-sediment optimal scheduling 

In this study, the flow-sediment optimal scheduling model takes into account the 

non-inferior relationships between hydropower generation and sediment siltation, with 

the consideration of the constraints including reservoir flood control and navigation. 

The developed optimization model is generalized as follows. 

 

Objective function 

The optimal regulation model includes two objectives: maximize hydropower 

generation and minimize sediment deposition in reservoir. The mathematical functions 

of the objectives are expressed as follows (Peng et al., 2004; Yoo, 2009): 
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 ( )1
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max / 3600
T

t t

t

E max H Q t f
=

=  = X  (Eq.1) 

 

 ( )2
1

min
T

s st

t

V min V f
=

= = X  (Eq.2) 

 

where E and Vs denote hydropower generation and sediment that deposited in the 

effective capacity of reservoir for all scheduling intervals; T is the total number of 

intervals over the scheduling horizon; f1(X) and f2(X) are functions of the objectives E 

and Vs; X is an independent variable decided by reservoir operation mode; η represents 

power coefficient; Δt is duration of an scheduling interval; Ht and Qt are hydraulic head 

and release passing turbines of hydropower plant in the tth scheduling interval; Vst is 

sediment deposited in a reservoir in the tth scheduling interval. 

 

Reservoir sedimentation calculation 

In the present study, the Vst is calculated by a one-dimensional mathematical model 

for unsteady flow and nonuniform sediment transport in a reservoir (Peng and Zhang, 

2006). The governing equations are described as follows: 

Flow continuity equation (van Rijn, 1993) 

 

 i

A Q
q

t x

 
+ =

 
 (Eq.3) 

 

Flow momentum equation (van Rijn, 1993) 
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 (Eq.4) 

 

Nonequilibrium transport equation for suspended load (Han and He, 2015) 
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( )*
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 (Eq.5) 

 

Sediment carrying capacity equation for suspended load (Yang, 1993) 

 

 * *( , , , )S S U H =  (Eq.6) 

 

Sediment transport rate equation for bed load (Yang, 1993) 

 

 * ( , , , )bk b kg g U H d=  (Eq.7) 

 

Total bed deformation equation (Yang, 1993) 
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where t and x are temporal and spatial axes; Q is streamflow discharge; ql is discharge 

of lateral flow; A, B and H are cross-sectional area, width and depth of streamflow, 

respectively; Z is water level; U is cross-sectional average velocity of streamflow; R is 

hydraulic radius; n is Manning’s roughness coefficient; Sk is suspended sediment 

concentration of size group k, written as SpS kk =  in which pk and S are size distribution 

and sediment concentration of suspended load; S*k is suspended sediment-carrying 

capacity of the kth group, expressed as * * *k kS p S=  in which S* sediment-carrying 

capacity of suspended load, and p*k is size distribution of S*; αk is saturation recovery 

coefficient for nonequilibrium suspended load transportation of kth size group; ωk is 

settling velocity of kth size group of suspended load; gb*k is the actual bed load transport 

rate of kth size group, written as ( )* *b k b k kg g d p=  in which gb(dk) is bed load transport 

capacity of kth size group, and dk is particle size of kth size group; Zk is depth of bed 

deposition; g is gravitational acceleration; s  is dry density of deposits or bed material; 

d is particle diameter of bed material, Ns is number of size groups of suspended load; N 

is number of size groups of total load. 

Equations 3–8 can be solved by finite difference method. Solution process consists 

of two steps: Flow Equations 3 and 4 were solved firstly, and sediment Equations 5 and 

8 secondly. For details of the solution process, the readers are referred to (Peng and 

Zhang, 2006). The Vst in Equation 2 can be calculated based on the computed result of 

Zd in Equation 8. 

 

Constraints 

Water volume balance constraint 

The water volume balance equation is expressed as 

 

 ( )1t t t t tV V Q q S t+ − = − −   (Eq.9) 

 

where Vt+1 and Vt are reservoir storages at the end and beginning of the tth interval, 

respectively; Qt and qt are inflow and outflow discharges during the tth interval; St is 

discharge of loss water in a reservoir during the tth interval. 

 

Flood control constraints of reservoir 

The flood control constraints of reservoir are expressed as 

 

 maxZt Z
, maxtq q  (Eq.10) 

 

where Zt is water level of reservoir at the end of the tth interval; Zmax is reservoir flood 

limiting water level; qmax is permissible discharge of streamflow at flood control point 

downstream of reservoir. 

 

Navigation constraints 

The navigation constraints of reservoir are expressed as 
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 minZt Z
, mint tq q  (Eq.11) 

 

where Zmin is navigable water stage in reservoir area; qtmin is minimum discharge flow 

that meets the needs of navigation downstream of reservoir during interval t. 

 

Water release ability limit of dam 

The outflow discharging from reservoir is restrained by the maximum discharge 

capacity of dam discharge structure, which can be expressed as 

 

 ( )t tq q Z  (Eq.12) 

 

where q(Zt) is flood peak discharge ability limit of dam at level Zt. 

 

Power constraints of station 

The power constraints of station are expressed as 

 

 ,min ,maxt t t tN H Q N   (Eq.13) 

 

where Nt,min and Nt,max are the upper and lower limits of plant power during interval t, 

respectively. 

 

The proposed catfish-effect MOPSO algorithm 

Catfish effect mechanism 

The catfish effect originates from an effect observed by Norwegian fishermen when 

they introduced catfish into a holding tank for caught sardines. The added catfishes 

would stimulate the movement of sardines, thus making the sardines alive and fresh 

longer (Hu, 2004). 

The catfish effect in this study is applied to the MOPSO algorithm and this method is 

called catfish-effect MOPSO algorithm (CE-MOPSO). At the early evolutionary stage 

of particle group, particles are treated as sardine’s particles, and the Sigma method 

(Mostaghim and Teich, 2003) is used to search the space of solution with a fast 

convergence rate. When sardines group are trapped in a local optimum because of poor 

diversity, the catfish particles will be produced from the non-inferior solutions and be 

put into sardine particles. The generated catfish particles will trigger the driven 

influence on sardine particles, and guide sardine particles towards a new search region 

to improve the diversity in the population. 

 

Implementation of CE-MOPSO 

The detailed steps of the proposed CE-MOPSO algorithm are given below. 

Step 1: Set the parameters including swarm population size N, maximum number of 

iteration K, and external archive size M. The external archive is used to store the 

generated non-inferior solutions that can be used to guide the search. The size of 

external archive determines the number of non-inferior solutions. 
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Step 2: Initialize the population. Treat particles as sardine particles, and initialize 

particles in the population with random positions and velocities that meet the constrains. 

Initialize M/2 non-inferior solutions and set them as the individuals in external archive. 

Step 3: Calculate the fitness of each particle, and maintain the external archive based 

on the crowding distance of each non-inferior solution. 

The equation used for computing the fitness of each particle with two-objective 

fitness function was expressed as follows: 

 

 

1

1 1

2

1 1

Fit( ( )) / 3600

Fit( ( )) 1/{ }

L

t t l

t l

L

st l

t l

T

T

f H Q t M W

f V M W


= =

= =


=  −



 = −


 

 

x

x

 (Eq.14) 

 

where M is penalty factor; Wl is the value that the tth constraint is violated; L is total 

number of constraints. 

Generate non-inferior solutions according to the calculated fitness values of particles, 

and store the generated non-inferior solutions per iteration in external archive. If the 

number of non-inferior solutions in external archive exceeds the M, retain the 

individuals with larger crowding distance, thus maintain the diversity of non-inferior 

solutions. The crowding distance (dj) of individual j in external archive was computed 

as follows (Reddy and Kumar, 2007): 

 

 
max min

1

| ( 1) ( 1) |O
ob ob

j

ob ob ob

f j f j
d

f f=

+ − −
=

−
  (Eq.15) 

 

where ob denotes the objective index; O is the total number of objectives; max
obf  and 

min
obf  denote the max and min values of objective function, respectively; fob(j + 1) and 

fob(j-1) are the values of objective function for individuals j-1 and j + 1, which are the 

two nearest to individual j. 

Step 4: Determine the best value of each particle in population, and calculate the 

Sigma value of each individual in both population and external file as follows 

(Mostaghim and Teich, 2003): 

 

 

2 2

1 2

2 2

1 2

f f

f f


−
=

+
 (Eq.16) 

 

where f1 and f2 denote the two objective functions’ values of particle. 

Step 5: Calculate the diversity of particle swarm at the kth iteration (ξ(k)) as follows: 
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where k is iteration number; j is serial number of particle; 
j

ix  is position in the ith 

dimension of particle j; 
,j gbest

ix  is global best position in the ith dimension of particle j 

which exists in external archive, and its Sigma value is the second closest to the Sigma 

value of particle j; Bui and Bdi denote the upper and lower limits of 
j

ix . 

Check whether the ξ(k) is less than the scheduled threshold ξ0. If ξ(k) > ξ0, go to 

step 6, otherwise go to step 7. 

Step 6: Determine the global optimal value of each particle using Sigma method 

(Mostaghim and Teich, 2003). If the sigma value of a particle in population is closest to 

the sigma value of an individual in external archive, the individual in external archive 

will be selected as the particle’s global best position. Update the velocity and position of 

the jth particle as follows (Kennedy and Eberhart, 1995): 

 

 ,

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))j j j pbest j gbest j

i i i i i iv k v k c r x k x k c r x k x k+ =  +  − +  −  (Eq.18) 

 

 ( 1) ( ) ( 1)j j j

i i ix k x k v k+ = + +  (Eq.19) 

 

where ω is coefficient of inertia weight, which controls the influence of the particle 

previous velocity on its current one; c1 and c2 are learning factors; r1 and r2 are 

independent random numbers uniformly distributed in the interval [0,1]; 
j

iv  is the ith 

dimension velocity of particle j; 
,j pbest

ix  is the jth particle’s best position in the ith 

dimension. 

Step 7: Generate catfish particles to promote the diversity of swarm particles. 

Let C be the maximal number of catfish particles. If the number of non-inferior 

solutions is less than C, set all the non-inferior solutions as catfish particles. Otherwise, 

select C non-inferior solutions with larger crowding distance as catfish particles. The 

catfish particles are put into the sardine particle swarm as external competitive 

individuals. The added catfish particles, which act only at the current iteration and will 

be “dead” and removed from the particle swarm at next iteration, will trigger the driven 

influence on sardine particles. Thus, the search of solutions is affected by not only the 

guidance of global optimal value and individual optimal value, but also the driving of 

catfish particle. The renewed velocity of the jth particle is updated as follows: 

 

 
 

, ,

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))

( ( ) ( )) exp ( ) ( )

j j j pbest j j gbest j

i i i i i i

I j I j

Ci i Ci i

v k v k c r x k x k c r x k x k

Sat P sign x k x k Q x k x k

+ =  +  − +  − −

  −  −  −
 (Eq.20) 

 

where subscript C denotes catfish particle index; superscript I is a serial number of 

catfish particle which is closest to sardine particle j in dimension i, and is calculated as: 

 

 ( ) | min ( )I j

Ci i
l

I l x k x k= −( )  (Eq.21) 

 

Thus, the catfish particle nearest to each sardine particle in each dimension can be 

chosen at each iteration. 
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Note that the fourth item in Equation 20 is called the driven effect item. Sat is a 

binary variable, 0 or 1 stochastically that decides if sardine particles are driven-

influenced by catfish particles, which can be expressed as: 

 

 

1

1

0

1

k k

I I

k k

I I

F F
Sat

F F

+

+


= 


 (Eq.22) 

 

where k

IF  is the fitness of catfish particle I at the kth iteration. 

Parameters P and Q in Equation 20 decide how hard catfish particles drive sardine 

particles. The nearer the distance between catfish particle and sardine particle is, the 

greater driven effect of catfish particle on sardine particle is. Consequently, sardine 

particles keep escaping from catfish particles, and catfish particles occupy around 

global best position rapidly. 

It can be seen that the catfish effect mechanism described in Equation 20 has two key 

points: (1) Global optimal value of sardine particle is decided by the Sigma value of 

catfish particle, which is the second close to Sigma value of sardine particle instead of 

the closest one. It prevents sardine particles from trapping into the local optimal 

solutions caused by the Sigma method and helps sardine particles find the global 

optimal solution with local depth search and increased convergence speed. (2) Including 

the guidance of global optimal value and individual optimal value, the search of 

solution was also affected by the driven effect of catfish particles. This makes sardine 

particles escape from catfish particles generated from non-inferior solutions, which can 

avoid the solution search concentrating near non-inferior solutions and falling into a 

“locked” status. Thus, the searching space is broadened and the diversity of solution is 

improved. 

Step 8: Generate the newer particle according to the computed velocity and position. 

Step 9: Take the maximum number of iteration as terminal condition of the 

algorithm. If the number of iteration is less than the maximum iteration, then go to 

step 3; otherwise end the search and output the non-dominated solution set from 

external files. 

The flowchart of the CE-MOPSO is exhibited in Figure 2. 

Results and discussion 

Efficiency of CE-MOPSO algorithm 

Before applying to a real case study, we first demonstrated the efficiency of the 

proposed CE-MOPSO algorithm through a bi-objective test function (ZDT3). We 

compared this algorithm with MOPSO (Coello et al., 2004) and Sigma-MOPSO 

algorithms (Mostaghim and Teich, 2003), and used two performance metrics to assess 

their performance. 

 

Performance measures 

Convergence index (γ) measures the distance of the obtained non-dominated 

solutions to the true Pareto front, which is written as (Tripathi, 2007): 
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=

=   (Eq.23) 

 

where n denotes the number of members in non-dominated solutions; di is the Euclidean 

distance between the ith member in non-dominated solutions and its nearest member in 

the true Pareto front. A smaller value of γ reflects better convergence toward the true 

Pareto front. 

 

 

Figure 2. The flowchart of the catfish-effect multi-objective particle swarm algorithm 
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Diversity index (Δ) indicates the spread along the non-dominated solutions, which is 

written as (Tripathi, 2007): 
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f l i
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d d d d
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 (Eq.24) 

 

where di is the Euclidean distance between adjacent solutions in the obtained non-

dominated solutions set, and d  is the average of all the di, which is expressed as 
1

1
/ ( 1)

n

ii
d d n

−

=
= − ; df and dl are the Euclidean distances between the extreme solutions 

and the boundary solutions of the obtained non-dominated set. The smaller the value of 

Δ, the more uniform the distribution of the non-dominated solutions. 

 

Discussion of results 

The following parameters were chosen for the three algorithms: population size 

N = 50, archive size M = 100, maximum number of iteration K = 500, learning factors 

c1 = c2 = 2, inertia weight 𝜔 = 0.9-0.5 k/K, in which k is the current iteration number. 

Relative diversity threshold of CE-MOPSO algorithm was set to ξ0 = 0.45 (The 

calculated results showed that the evolution of the population stabilized in the vicinity 

of this value and the diversity of the population needed to be promoted). 

Twenty independent runs are performed for each algorithm on ZDT3, and their 

average and variance values of the two metrics (γ and Δ) are presented in Table 2. It can 

be seen that the proposed CE-MOPSO algorithm outperforms MOPSO and Sigma-

MOPSO algorithms for ZDT3 test problem, with the lowest average and variance values 

of the γ. It indicates that the CE-MOPSO achieves a faster convergence rate to the true 

Pareto optimal fronts than MOPSO and Sigma-MOPSO algorithms. Also, our proposed 

CE-MOPSO algorithm obtained the best results with respect to the Δ, with the smallest 

average and variance values of the Δ. This shows that the proposed CE-MOPSO can to 

attain a better distribution of solutions than the other two algorithms for ZDT3 test 

problem. Therefore, it can be concluded that the solutions obtained by CE-MOPSO 

have better performance in convergence and diversity. It should be mentioned that the 

CE-MOPSO consumes much more computation time than MOPSO and Sigma-MOPSO 

algorithms, because the catfish’s driven effect makes sardine particles explore a deeper 

search space to promote the diversity in population, which will consume more time. 

 
Table 2. Results for ZDT3: γ, Δ, and the time required per iteration 

Test function Index MOPSO Sigma-MOPSO CE-MOPSO 

ZDT3 

γ (average) 0.00418 0.10205 0.00311 

γ (variance) 0.00000 0.00238 0.00000 

Δ (average) 0.83195 0.76016 0.33004 

Δ (variance) 0.00892 0.00349 0.00007 

Time (sec) 16.78 19.35 71.49 

 

 

The resulting Pareto fronts produced by the three algorithms for ZDT3 function are 

presented in Figure 3. It is seen that compared with MOPSO algorithm, the solutions of 



Peng et al.: Catfish-effect multi-objective particle swarm optimization for coordinated dispatch 

- 11681 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 17(5):11669-11686. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/1705_1166911686 

© 2019, ALÖKI Kft., Budapest, Hungary 

Sigma-MOPSO had better convergence at two ends, but the distribution in the middle 

was rather dispersed with several gaps (Fig. 3b). The solutions of MOPSO algorithm 

were scattered at two ends, but the distribution in the middle was relatively continuous 

and uniform (Fig. 3a). Thus, the Sigma-MOPSO algorithm paid more attention to the 

convergence at two ends, but ignored the convergence quality and diversity of solution. 

Compared with the MOPSO and Sigma-MOPSO algorithms, the CE-MOPSO in 

Figure 3c can converge faster towards the true Pareto front, and produce the true Pareto 

front with better spread both at two ends and in the middle on this function. This also 

demonstrates that the proposed CE-MOPSO has obvious advantages in convergence 

and spread of solutions for ZDT3 test problem. 

 

 

  

Figure 3. Obtained Pareto fronts using (a) MOPSO, (b) Sigma-MOPSO and (c) CE-MOPSO on 

test function ZDT3 

 

 

Application 

Case study 

The one-dimensional numerical model for reservoir sedimentation was validated 

with other numerical results. The comparison of the computed sediment deposition for 

10 years operation of the TGR was presented in Table 3. It is shown that the calculated 

sedimentation in TGR agreed well with the results calculated by Yangtze River 

Scientific Research Institute, the maximum relative error is 8.584% in the reach of 

Cuntan-Jiangjin. This indicated that the one-dimensional numerical model was accurate 

enough to model the sedimentation in the TGR. 

 
Table 3. Computed sediment deposition for 10 years operation of the TGR 

River reach V1 (108 m3) V2 (108 m3) Relative error (%) 

From the dam site to Fengdu 26.32 26.3 0.076 

From Fengdu to Fuling 2.291 2.31 0.822 

From Fuling to Changshou 1.146 1.2 4.500 

From Changshou to Cuntan 0.327 0.337 2.967 

From Cuntan to Jiangjin 0.213 0.233 8.584 

From the dam site to Jiangjin 30.297 30.38 0.273 

V1 denotes the computed results by using the one-dimensional numerical model in the paper; V2 denotes 

the computed results of Yangtze River Scientific Research Institute 

 

 

Based on the designed operation scheduling of GTR, the main constraints were set as 

following: (1) Requirements of sediment flushing and constraints of flood control: 
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considering improvement of flood forecast techniques and requirement of sediment 

flushing, limited water level of flood control is varied between 140 m and 145 m, 

maximum release discharge reservoir is 55,000 m3/s. (2) Restrictions of minimum 

power and navigation: minimum power of plants in dry season is 4.99 million kilowatts 

(kW), water level controlled by navigation upstream of TGR in dry season is 155 m. 

Select water level of TGR at each time step as decision variable, and one particle 

represents one of operation scheduling strategies of reservoir. Thus, each particle is 

expressed as: 

 

 1 2( , , , , , )
j j j j j

t TX x x x x=  (Eq.25) 

 

in which 
j

tx  is the water level of reservoir during period t; superscript j denotes the 

serial number of particles; T denote total number of time step. 

 

Results analysis 

Ten independent runs were performed for optimizing the coordinative flow-sediment 

scheduling operation in the TGR by using the proposed CE-MOPSO. Figure 4 shows 

the obtained optimal frontier of Pareto and its evolution process through 50, 100, 300, 

and 500 iterations of CE-MOPSO algorithm. It is shown that the non-inferior solution 

set is renewed during the process of evolution, and the obtained Pareto set effectively 

approximate to the true Pareto frontier. Comparing the obtained Pareto frontier result of 

500 iterations with that of 300 iterations, it is basically the same in the central section of 

B-C and A-B area, but the distribution of the non-inferior solutions near A point of 500 

iterative times are better than the result of 300 iterative times. The non-inferior solutions 

near B point has formed a more continuous uniform distribution than those of 300 

iterative times. This indicates that the diversity of non-inferior solution set is improved 

with iterations by catfish effect mechanism, especially the non-inferior solutions are 

well-distributed at each end and inflection point of the optimal frontier. 

 

 

Figure 4. The optimal frontier of Pareto and evolution process of the sedimentation in ten year 

and the annual average power generation 
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The Pareto optimal frontier shown in Figure 4 also reflected the relationship between 

annual average power generation and sediment deposition in ten years. An increased 

hydropower generation resulted in an increased deposition in reservoir. The targets of 

increasing hydropower generation and decreasing reservoir sediment deposition are in 

contradictory ways. B point is an inflection point of the relationship between 

hydropower generation and sediment deposition of the TGR. In the section of A-B area, 

the rate of increasing power generation is greater than the rate of increasing siltation, 

while the rate of increasing power generation is smaller than the rate of increasing 

siltation in the section of B-C area. The inflection point B is very important for the 

selection of a non-inferior scheme in the TGR operation. For the schemes is in A-B 

area, increasing 1 × 108 kWh power generation results in 0.025 × 108 m3 sediment 

silting in the reservoir. For the schemes is in B-C area, increasing 1 × 108 kWh power 

generation results in 1.08 × 108 m3 sediment silting in the reservoir. 

Figure 5 shows the non-inferior reservoir operation water level processes of the 

schemes corresponding to points A, B and C. In A scheme, since reservoir water level 

was lowered in flood season and did not reach the normal storage water level at the end 

of flood season that affects the power generation dispatch in non-flood season, both 

sediment deposition and power generation is the minimum in A scheme. In C scheme, 

due to the high water level operation in flood season, its power generation and sediment 

deposition is the maximum. The operation water level of B scheme in flood season is 

between A and C, which not only makes full use of lowering water level for sediment 

reduction in flood season, but also raising the water level to the normal storage level to 

ensure the power generation dispatch in non-flood season, so its power generation and 

sediment deposition is in the middle. This operation mode is different from traditional 

single-objective dispatch, which belongs to of multi-objective optimization of the 

coordinative water-sediment dispatch. 

 

 

Figure 5. Non-inferior reservoir operation level process of A, B and C schemes 

 

 

The mean annual power benefits and sedimentation represent short-term benefit and 

long-term benefits of the reservoir, respectively. If reservoir managers or decision 

makers focus on the life of reservoir that could play a long-term comprehensive 
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utilization benefit, the corresponding reservoir water level need to be lowed, such as 

scheme A. If decision makers focus on the short-term benefits of reservoir, the 

corresponding reservoir water level need to be raised, such as scheme C. The optimal 

scheme has better balance between power generation and reservoir sedimentation, and 

the obtained the non-inferior solutions can be used to formulate reservoir operation 

policies in practice. These policies can also be used to plan sediment trapping and flow 

operations. 

Conclusion 

In this paper, a catfish-effect multi-objective particle swarm optimization (CE-

MOPSO) algorithm is proposed for optimizing the coordinated dispatch of water and 

sediment in a reservoir. Catfish particles, generated from the individuals in external 

archive, have greater vigor and more competitiveness than sardine particles. When 

added into sardine particles, the catfish particles have driven effect on sardine particles, 

which makes the sardine particles escape from them. By this, the sardine particles may 

jump out of the “locked” status, explore the search region, and improve the diversity of 

population. This helps the MOPSO algorithm to effectively guide the search towards the 

true Pareto front in further generations. In addition, the global optimal value of particle 

is second close to its Sigma value instead of the closest one. This prevents sardine 

particles from trapping into the local optimal solutions caused by the Sigma method, 

and helps sardine particles find the global optimal solution with local deeper search and 

increased convergence speed. The performance of CE-MOPSO in nonlinear numerical 

function optimization was first investigated with a test of classical bi-objective test 

function (ZDT3). The results were encouraging and promising in both computational 

efficiency and search efficiency when compared with the MOPSO and Sigma-MOPSO. 

The proposed CE-MOPSO was then applied to a multi-objective optimization of the 

coordinative flow-sediment regulation in the Three Gorges Reservoir. The obtained 

Pareto set effectively approximated the true Pareto frontier during the process of 

evolution. The scheduling results of CE-MOPSO reflected the tradeoff between power 

generation and sediment deposition in ten years, which is useful for making reservoir 

operation policies of sediment trapping and flow operations in practice. These results 

demonstrate that the proposed CE-MOPSO can provide efficient and effective solutions 

for the optimization of the coordinative flow-sediment scheduling in a reservoir. 

However, in CE-MOPSO, we need to define the maximal number of catfish particles, 

which has some subjective. In the future, a better approach for selecting the maximal 

number of catfish particles is desired to make a balance between computation time and 

performance of the algorithm. In addition, we would like to compare CE-MOPSO with 

some other evolutionary algorithms and apply CE-MOPSO for solving higher 

dimensional optimization problems. 
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