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Abstract. Organic carbon (OC) fluxes in the Ulleung Basin (UB) sediments, East/Japan Sea (E/JS) were 

investigated through geochemical analyses and sediment chamber experiment. The UB sediment has high 

organic carbon contents of over 2% and the mean C/N molar ratio is 7.09, therefore suggesting that the 

organic matter deposited in the UB is predominantly of marine origin. Apparent sedimentation rates 

(ASR) calculated from excess 210Pb activity distribution, ranged between 0.036-0.047 cm year-1. The 

mass accumulation rates (MAR) calculated from porosity, grain density (GD) and ASR, ranged between 

131-184 g m-2 year-1. Input fluxes of OC (IF) and burial fluxes of OC (BF) varied between 7.89-11.08 and 

2.02-3.10 gC m-2 year-1, respectively. Regenerated fluxes of OC (RF) estimated with oxygen consumption 

rate, varied between 6.22-6.59 gC m-2 year-1. However, the RF calculated by subtracting BF from IF, 

varied between 5.87-7.98 gC m-2 year-1. The proportions of the IF, RF, and BF to the primary production 

(177.1 gC m-2 year-1) in the UB were about 5.4%, 3.9%, and 1.5%, respectively. These proportions were 

over 5 times higher than the average of world open ocean. Based on these results, the UB appears to play 

an important role in the deposition and removal of organic carbon in the E/JS. 

Keywords: particulate organic carbon (POC), input flux of organic carbon (IF), regenerated flux of 

organic carbon (RF), burial flux of organic carbon (BF), Ulleung Basin (UB) 

Introduction 

The amount of organic matter in marine sediments reflect the supply and 

preservation of organic materials from marine and terrestrial sources (Tissot et al., 

1980; Summerhayes, 1981). The export and preservation of organic matter from the 

surface waters, where they are produced, down to the basin floor determines the role of 

basins as a potential carbon sink. The export fluxes of particulate organic carbon (POC) 

play an important role in the transfer of carbon between the atmosphere and the ocean 

(Savoye et al., 2006; Waples et al., 2006). In the open ocean, the main source of 

particles is biological production. Organic particles are produced from carbon fixation 

through photosynthesis and uptake of nutrients. Most of the POC is recycled in the 

surface water by decomposition into dissolved organic carbon and remineralization into 

inorganic carbon. Only a small fraction of POC is exported from the euphotic layer and 

subsequently either recycled in the deep waters or reaching the sediments. The POC 
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export out of the surface layer is the most important process for the transport of 

atmospheric CO2 to the deep ocean (Trull et al., 2011). 

Export of organic material from the euphotic zones into deeper oceanic zones occurs 

in different ways. Particulate materials as biogenic materials, detrital materials and fecal 

pellets are transported by gravitational settling and lateral transport. Whereas the 

dissolved organic matter export largely depends on the extent of downward diffusion 

and mixing. Generally, most of this particle flux is affected by early diagenesis during 

settling: concentration decreases significantly with increasing water depth preferentially 

due to biogenically mediated organic matter degradation and dissolution processes 

(Suess, 1980). So, only a small fraction, which is not reintroduced back into the oceanic 

water column and the euphotic zone, reaches marine sediments. 

Marine sediments acting as important sinks for organic matter are known from, for 

example, upwelling areas, shelf mud depocentres and marginal sea basins (Leipe et al., 

2011). Organic carbon (OC) in marine sediments represents a major component of the 

global carbon cycle (Seiter et al., 2004). OC cycles in deep basin sediments are of 

interest for assessment of the long-term removal of CO2 from surface waters and the 

regeneration of nutrients from the sediments (Eimeis et al., 2000). A key step in this 

cycle is represented by the reminelalization of organic matter at the sediment-water 

interface, via a number of oxidative processes. 

The E/JS is a semi-enclosed marginal sea between continental Asia and the Japanese 

archipelago, connected to open ocean through straits 12–140 m in depth (Chough et al., 

2000). The E/JS is considered as a miniature ocean, since it has typical characteristics of 

open oceans, such as a deep ventilation system, subpolar and subtropical gyres, and a 

western boundary current (Masuda, 2000). The E/JS has three deep basins (Ulleung 

Basin, Yamato Basin, and Japan Basin). The UB, located in the southwestern part of the 

E/JS, is surrounded by continental slopes of the Korean Peninsula, the southwestern part 

of Japan’s main island of Honshu, and Ulleung and Dok island (Fig. 1). The northern 

and western margins of the basin are steep (> 10°), whereas the southern and eastern 

margins have smooth slopes (1~2°) and a broad continental shelf (Park et al., 2005). 

The basin floor lies at depths of 2000~2300 m, with the boundary between the 

continental slope and the UB approximately 2000 m in depth. Recent sediments appear 

to be primarily hemipelagic (Chough and Brag, 1987), no major rivers drain into the 

basin along the coast of the Korean Peninsula (Ikehara et al., 1994; Hong et al., 2008). 

This study focused on OC cycle at the sediment-water interface and ultimately 

removal of OC in the UB sediments. The E/JS is a small local sea, but it is similar to the 

characteristics of the ocean. It is therefore the most suitable model for studying the 

carbon sinking to the deep ocean floor. The main purpose of this paper is to present a 

carbon storage and removal mechanisms of deep UB sediments, and to understand role 

of deep basin sediment for the removal of CO2 from the E/JS surface water. This result 

is crucial for future carbon cycle and deep ocean ecosystem modelling. 

Materials and methods 

Sediment sampling and analyses 

Sediment samples were collected using a box corer at sites on the deep basin (D2, 

D3, and D4) in April 2006 and August 2007. Sediment samples for geochemical 

analysis were collected from the box core using acrylic core samplers (8 cm i.d.) that 

were then immediately sealed with polyethylene stoppers (Fig. 2). The core samples 
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were transferred to the laboratory onboard the research vessel, where the sediment was 

sectioned at intervals of 1 or 2 cm and transferred to acid-cleaned polyethylene bottles 

that were sealed with caps. The sediment samples for measuring organic carbon content, 

total nitrogen content, CaCO3 content, opal content, sediment density, water content, 

and 210Pb activity were stored at 4°C. 

 

Figure 1. Study area and sampling sites in the Ulleung Basin, East/Japan Sea. Trap is sediment 

trap mooring site (KORDI, 2003) 

 

 

The organic carbon content was determined by comparing the total carbon measured 

by a Carlo Erba NA 1500 nitrogen–carbon–sulfur (NCS) analyzer to the inorganic 

carbon content measured by a Coulometrics inorganic carbon analyzer. Dried samples 

were combusted at 900ºC in an oxygen atmosphere in the NCS analyzer. The resulting 

products were chromatographically separated and quantified to obtain the total carbon 

and total nitrogen contents. 

Calculation of the sedimentation rate and sediment mass accumulation rate (MAR) 

Dried sediment samples taken from various depths were used to determine the 

sediment density and porosity. Density was measured by a Micromeritics AccuPyc 

1330 density analyzer, and porosity was calculated from water content. A portion of the 

dried samples were ground and spiked with a known quantity of 208Po to determine the 

accuracy of the analyses. These samples were leached and brought to dryness three 

times in the presence of concentrated HNO3 and 6N HCl. Dilute HCl was then added to 

the sample, and the solution was separated from the residual solids by centrifugation. 

For each sample, the dissolved polonium isotopes were plated onto a silver planchet. 
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The 210Pb activity was determined by measuring the alpha activity of its granddaughter, 
210Po, using a silicon-surface-barrier detector coupled to a multi-channel analyzer. All 

measurements were conducted at the Korea Basic Science Institute. 

Aparent sedimentation rates (ASR) were estimated based on the 210Pb profiles. The 

exact relation is Equation 1. 

 

 S = -λ/b (Eq.1) 

 

where S is the sedimentation rate (cm year-1), λ is the decay constant of 210Pb 

(0.0311 year-1), and b is the slope of the curve. The calculation of sedimentation rates 

assumes that the excess 210Pb flux and sedimentation are constant over time. 

Sedimentation rates calculated from profiles of excess 210Pb activity often overestimate 

actual accumulation rates because the gradual decrease in mixing efficiency with 

increasing depth results in a depth profile indicating exponential decay (Niggemann et 

al., 2007), which can be falsely interpreted as undisturbed sediment accumulation. 

The sediment mass accumulation rate (MAR) was calculated by following 

Equation 2. 

 

 MAR (g m-2 year-1) = (1-φ) × GD (g cm-3) × ASR (cm year-1) × 104 (Eq.2) 

 

where φ is porosity, and GD is sediment grain density. The porosity was calculated 

from the water content. At all stations, water contents decreased rapidly within the top 

10-15 cm and were relatively constant below it. We used an average of porosities below 

15 cm at each station for the MAR calculation. An average of GD below 15 cm was 

also used for the MAR calculation. 

 

Figure 2. Photographs of (a) sediment sampling using a box corer and (b) subsampling for 

geochemical analyses and sediment incubation chamber experiment. A schematic diagram of 

(c) sediment incubation chamber (Lee et al., 2019) 
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Sediment incubation for calculation of oxygen consumption rate (OCR) 

Bottom water taken from the Rosette-sampler was carefully added on top of the 

sediment at each stations where sediment sampling was performed using the box corer 

(Fig. 2). The water column height overlying the 30 cm sediment core was 18 cm, 

corresponding to a water volume of approximately 2 L. Immediately after adding 

bottom water, acryl cover was put on acryl core liner without trapping any air. The core 

was incubated together with the overlying water at approximately in-situ temperature 

(0.4°C) in a darkened, refrigerator for benthic exchange measurement of oxygen. A 

stirring speed in the overlying water of approximately 9 rpm was obtained by using a 

Poly Ethylene stirring bar attached to a Poly Ethylene rod 10 cm above the sediment 

surface during incubation time of 1-2 days (Fig. 2). The sediment incubation was 

performed until the oxygen was completely depleted or the reduction in oxygen became 

steady. At the beginning and end of the incubation, overlying water was collected, and 

the DO concentration was adjusted via Winkler titration. The oxygen consumption rate 

(OCR) was estimated by reference to the changes in the concentrations measured by the 

respective sensors in the chamber (Lee et al., 2019), and calculated using the Equation 3. 

 

 F = dC/dt × V/A (Eq.3) 

 

where F is the net flux of substance via the water-sediment boundary layer 

(mmol m-2 day-1), dC/dt is the slope of the changes in the concentration of oxygen over 

time (mmol L-1 d-1), V is the chamber volume (L), and A is the area of the chamber’s 

horizontal plane (m2). 

Surface chlorophyll-a concentration 

The monthly surface chlorophyll-a concentration (mg/m3) were used MODerate resolution 

Imaging Spectroradiometer (MODIS)-aqua level 3 data (4x4 km spatial resolution and 

Standard Mapped Image (SMI) projection) and obtained from NASA Ocean Biologoy 

Processing Group (http://oceancolor.gsfc.nasa.gov/). The chlorophyll-a concentration data on 

August, 2007 covered the study area was resampled from the level 3 data. 

Results 

Surface sediment characteristics 

Figure 3 shows contents of the total organic carbon (TOC), total nitrogen (TN), 

calcium carbonate (CaCO3) and biogenic opal (Si) in the UB sediment. TOC contents in 

the surface sediments were over 2.6% except station D3. TOC contents profiles showed 

dramatically decreasing from 2.6 to 1.7% in the uppermost 5 cm, and slightly decline 

below it. TN content profiles displayed same profiles of organic carbon contents at all 

stations. At surface sediments, TN contents varied from 0.25% to 0.4%. At all stations, 

calcium carbonate contents were under 1% at whole depth. The Si contents ranged from 

10% to 16% at stations D2 and D4 (Fig. 3). 

TOC contents are positively correlated with TN values at the UB sediments, with 

mean TOC/TN (C/N) molar ratio of 7.09, which is almost same as the Redfield ratio 

(6.63), indicating that the organic matter deposited in the UB is predominantly of 

http://oceancolor.gsfc.nasa.gov/
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marine origin. Biogenic opal/TOC (Si/C) ratio ranged from 4.8 to 9.9, with a mean Si/C 

ratio is 7.2 (Fig. 4). The mean Si/C ratio of station D2 is 7.6, and station D4 is 6.7. 

 

Figure 3. Depth profiles of (a) total organic carbon (TOC), (b) total nitrogen (TN), (c) calcium 

carbonate (CaCO3) and (d) biogenic opal in the Ulleung Basin sediment. In site D3, the 

biogenic opal content could not be analyzed 

 

 

Figure 4. Organic carbon versus (a) total nitrogen contents and (b) biogenic opal contents at 

the Ulleung Basin sediment. The C/N ratio was calculated from the slope of the best-fit 

regression line 

 

 

Sedimentation rate 

Sedimentation rates were calculated primarily from excess 210Pb distribution, with 

the common assumption that fluxes of sediment and the associated excess 210Pb activity 

are reasonably constant on decadal to centennial timescales in the UB. The apparent 

sedimentation rates (ASR) varied between 0.036-0.047 cm year-1 (Fig. 5). The sediment 

mass accumulation rate (MAR) was calculated by porosity, sediment grain density 

(GD), and ASR in UB sediments. The porosity varied from 0.85 to 0.86, and the GD 

varied from 2.61 to 2.63 g cm-3 (Table 1). The calculated MARs ranging from 131 to 

184 g m-2 year-1, was relatively higher at the station D3 than at the station D4. 
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Organic carbon fluxes in the sediment 

Time-series sediment trap was deployed at 2,100 m water depth in the UB from 

December 1998 to January 2000 (KORDI, 2003), which reported that OC content was 

approximately 6%. Input flux of organic carbon (IF) was calculated from the MAR and 

OC content at 2,100 m water depth. The calculated IFs varied from 7.89 to 

11.08 gC m-2 year-1. Burial flux of organic carbon (BF) was calculated from the MAR 

and the averaged OC content below the sediment depth 15 cm where it was not changed 

considerably (Fig. 3). The calculated BFs varied between 2.02-3.10 gC m-2 year-1 

(Table 1). 

 

Figure 5. Depth profiles of excess 210Pb activities (error bars denote standard deviations) at site 

D2, D3 and D4 in Ulleung Basin sediment. The dotted lines indicate the surface mixed layer 

(SML) 

 

 
Table 1. Water depth (m), Porosity(φ), grain density (GD), apparent sedimentation rate 

(ASR), mass accumulation rate (MAR), Input flux of organic carbon (IF), regenerated flux of 

organic carbon (RF), and burial flux of organic carbon (BF) in the Ulleung Basin sediment 

Site 
Water 

Depth (m) 
φ 

GD 

(g cm-3) 

ASR 

(cm year-1) 

MAR 

(g m-2 year-1) 

IF RF BF 

(gC m-2 year-1) 

D2 2,208 0.85 2.62 0.047 184 11.08 6.59 (7.98)a 3.10 

D3 2,190 0.86 2.61 0.036 131 7.89 6.22 (5.87)a 2.02 

D4 2,143 0.85 2.63 0.041 161 9.70 6.22 (7.15)a 2.55 

a Regenerated flux of organic carbon calculated by subtracting burial flux from input flux 

 

 

In sediments underlying well-oxygenated bottom waters, oxygen is the most 

important electron accepter for organic matter decomposition. The sedimentary oxygen 

consumption rate (OCR) is a good first-order indicator of organic matter oxidation rates 

in many locations. Concentrations of oxygen in the overlying water decreased linearly 
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with time over the entire period of the sediment incubations in this study (Fig. 6). A 

linear decrease was to be expected since oxygen concentration did not decrease by more 

than 5-10% of the almost initial bottom water values. At the stations D2 and D3 in April 

2006, sedimentary OCRs were 1.85 and 2.05 mmol m-2 day-1, respectively. At the 

stations D2 and D4 in August 2007, the measured sediment OCRs were 1.87 and 

1.85 mmol m-2 day-1, respectively (Fig. 6). 

 

Figure 6. Time-series of dissolved oxygen concentration in overlying water of chamber 

experiment at sites D2 and D3 in basin sediment in April 2006, at sites D2 and D4 in August 

2007. The solid lines indicate the result of linear regression at considerable oxygen reduced 

section 

 

 

Regenerated flux of organic carbon (RF) was calculated from the sedimentary OCR, 

since oxygen most likely is the predominant electron acceptors in the mineralization 

process of sediment, and the oxygen is used in the reduction of the reduced species. In 

deep sediment, 90% of oxygen is consumed in the mineralization of organic matter and 

the rest is consumed in the reduction of the reduced species. So, the oxygen 

consumption and mineralization of organic matter coincides with nearly. In general, 

138 moles of oxygen needed to oxidize 106 moles of organic carbon undergoing 

mineralization. At the stations D2 and D3 in April 2006, the RFs calculated with the 

OCR were 6.22-6.90 gC m-2 year-1, respectively. At the stations D2 and D4, the RFs 

were 6.29-6.22 gC m-2 year-1 in August 2007, respectively (Table 1). 

Discussion 

Sedimentary organic carbon 

At the UB, the high organic contents (> 2.5%) are rarely found in the deep sea 

sediments, except for the Black Sea with a large river discharge (Cociasu et al., 1996; 

Reschke et al., 2002) and the Chilean upwelling areas with high primary productivity 
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(Schubert et al., 2000; Böning et al., 2005). The UB sediments are less influenced by 

river discharge since no major rivers drain into the sea along the east coast of Korea 

(Ikehara et al., 1994). 

In the UB, OC flux estimated by the Honjo-type time-series sediment trap was 

8.8 gC m-2 year-1 at the 1020 m water depth from December 1998 to January 2001 

(KORDI, 2003), which is about 3 times higher than that in the Bering Sea (Takahashi et 

al., 2000) and comparable with that in the Chilean upwelling area (Hebbeln et al., 

2000). Therefore, the high OC contents in the UB appear to be resulted from the high 

export production in this area. Besides the high export production, the high OC contents 

in the UB may be due to the less dilution effect by calcium carbonate (Lee et al., 2008). 

Chen et al. (1995) suggested that carbonate saturation depths for aragonite and calcite in 

the E/JS were 300 and 1300 m, respectively. Thus, calcium carbonate contents in the 

UB sediments were less than 1% (Fig. 3), which caused the high OC contents in the 

UB. 

The OC and TN values were used to calculate the C/N molar ratios, which were used 

to identify whether sedimentary organic matter had originated from algal or land–plant 

sources. The average C/N molar ratio is 7.09 (Fig. 4). Algae have C/N molar ratios 

between 4 and 10, whereas vascular land plants have ratios of 20 or greater (Jasper and 

Gagosian, 1990; Meyers, 1994; Prahl et al., 1994). The average Si/C ratios are 7.6 and 

6.7 in sites D2 and D4, respectively (Fig. 4). The typical stoichiometric proportion of 

OC to biogenic opal in diatoms with adequate light and nutrients is approximate 7 

(Haskell et al., 2013), this suggests that the deposited organic matter in the UB sediment 

was predominantly of diatoms. 

In the UB sediment, more than 80% of deposited organic matter is composed of 

marine origin biogenic matter, which are dominated by silicate diatoms (Niggemann et 

al., 2007). In the surface ocean, they sink with POC and ballast minerals, such as 

siliceous opal and CaCO3 at the same time (Amstrong et al., 2001; Honda and 

Watanabe, 2010). A CaCO3 is mostly dissolved at a 1,300 m or shallower water depth, 

but POC and opal settle down on the deeper sea bed. Therefore, at over 2,100 m water 

depth, the CaCO3 was slightly dissolved and did not significantly affect POC flux. 

However, the POC sink with high content of biogenic opal, leading to higher POC flux, 

which may have increased the OC content in the UB sediment. 

Fluxes of organic carbon in the sediment 

The ASR tends to decrease with increasing water depth, which is consistent with the 

previous result found by Hong et al. (1997) in the UB. In addition, the sedimentation 

rates of this study are very similar to those measured by Hong et al. (1997), 

0.04-0.17 cm year-1, in the same study area. Miralles et al. (2005) proposed an inverse 

linear relationship between the ASR and water depth in the northwestern Mediterranean 

margin sediments; ASR (cm year-1) = 0.155 – 4.978 × 10-5 × water depth (m). This 

relation holds strongly in this study area, with only 10 % deviation between the 

measured values and the expected values from the above relationship. 

The high BF values (over 2 gC m-2 year-1) have rarely been found in the deep sea 

sediments (deeper than 2000 m), except for the Black Sea deep basin and intense 

upwelling areas. The BFs obtained from the deep basin of the Black Sea are similar to, 

or 2–3 times higher than those in the UB (Hay, 1998). In the Peruvian and Namibian 

upwelling areas, the IF is about an order of magnitude higher than in the UB (Calvert 

and Price, 1983; Böning et al., 2004). Although MAR estimated in the northern Gulf of 
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Mexico is similar to that in the UB, the IF is much lower due to low organic carbon 

contents (Yeager et al., 2004). 

Since oxygen respiration is the principal mineralization process in the sediment of 

the UB (Lee et al., 2008), a respiratory quotient of 0.77, which is consistent with the 

Redfiled stoichiometry for the oxidation of organic matter. But Accornero et al. (2003) 

presented that a respiratory quotient of 0.85 was assumed to convert sediment oxygen 

consumption into organic carbon remineralization in the sediment of the Gulf of Lions. 

In the conversion of oxygen consumption into mineralization rates, we assumed that 

oxygen was consumed by re-oxidation of reduced components within the sediment 

chamber. This process was found to significantly affect OC oxidation in other 

continental margin sediments (Canfiel et al., 1993). Previous studies have demonstrated 

that in sediments of the UB, oxygen and other processes such as Mn-oxide and Fe-oxide 

reduction, sulfate reduction does play a considerable role in the OC oxidation (Lee et al., 

2008; Choi et al., 2009). In the UB, near the sediment-water interface is anoxic 

condition due to oxygen penetration depth is a few millimeters, and stimulate the 

heterotrophic activity. Consequently, converted RF by OCR is lower than calculated RF 

by subtracting BF from IF (Table 1). 

Organic carbon cycle in the Ulleung Basin 

In the UB, Hahm and Kim (2001) estimated the export flux of OC (EF, 

64 gC m-2 year-1) using tritium and helium isotopes and Kim et al. (2011) determined an 

annual average EF (59 ± 3 gC m-2 year-1) using 238U/234Th disequilibrium. Based on 

Kim et al. (2011) seasonal average EFs were 216.0, 102.2, 55.2 and 84.2 mgC m-2 day-1 

in spring, summer, autumn and winter, respectively. In spring, the EF was higher than 

other seasons. This value was attributed to the highest value of the phytoplankton 

biomass, and the primary production was higher than in summer and autumn. In 

summer, the EF was moderate value. In autumn, the value was about four times lower 

than spring. This lower EF value was attributed to the lower primary production in 

autumn. In winter, however, despite of high primary production, the EF was relatively 

very low. 

Berger et al. (1989) suggested the proportions of OC export flux to primary 

production in the world open ocean and coastal ocean. The world open ocean and 

coastal ocean EF/PP ratios are 0.10 and 0.25, respectively. The annual average primary 

production in the UB was about 177.1 gC m-2 year-1 (Kim et al., 2011), the EF/PP ratios 

are 0.36, 0.07 and 0.29 at station D2, D3 and D4, respectively (Table 2), average EF/PP 

ratio is 0.299 (Kim et al., 2011). Satellite-derived primary production ranged between 

161-222 gC m-2 year-1 in the E/JS and the UB is much higher than the Japan basin 

(Yamada et al., 2005). The EF in the UB was 2 times higher than the world open oceans. 

The exported POC from the UB surface ocean is one of the largest sinks of 

atmospheric carbon dioxide. For example, Figure 7 showed the satellite-derived 

chlorophyll-a concentration image in August, 2007. Increasing chlorophyll-a 

concentration was covered in the study area compared to around area. Hyun et al. 

(2009) proposed that phytoplankton and bacterioplankton production is enhanced by 

coastal upwelling and anticyclonic eddy (i.e. Ulleung warm eddy) in the UB. Omand et 

al. (2015) proposed that a submesoscale eddy-driven flux of POC is unresolved in 

global carbon cycle models but can contribute as much as half of the total springtime 

export of POC from the highly productive oceans. Yoo and Park (2009) suggested that 

the southwest region in the E/JS is highly productive due to southerly wind-driven 
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coastal upwelling from spring to fall. Various studies noted that East Korea Warm 

Current (EKWC) is important factor, which the production in the coastal region 

transported into the UB by anticyclonic Ulleung Warm Eddy (Isoda and Saitoh, 1993; 

Michell et al., 2005; Hyun et al., 2009). Time-series sediment trap was deployed at 2100 

m water depth in the UB from December 1998 to January 2000 in order to estimate an 

annual flux of particulate matter (KORDI, 2003), which was 122 g m-2 year-1, less than 

the MAR (161 g m-2 year-1) estimated at site D4. The location of sediment trap 

deployment was apart about 50 km from site D4 (Fig. 1). The site D4 located in eddy 

region, so export production at D4 is higher than that of sediment trap mooring site. 

 
Table 2. POC Export flux (EF), Input flux (IF), regenerated flux (RF), and burial flux (BF) 

of organic carbon/primary production (PP) ratios in the Ulleung Basin. The average 

primary production in the Ulleung Basin was about 177.1 gC m-2 year-1 (Kim et al., 2011). 

Open ocean and Coastal ocean are the average proportions of organic carbon flux to 

primary production in the world open ocean and coastal ocean (Berger et al., 1989) 

Site 
EF / PP 

ratio 

IF / PP 

ratio 

RF / PP 

ratio 

BF / PP 

ratio 

D2 0.328 0.062 0.045 0.017 

D3 0.062 0.044 0.033 0.012 

D4 0.254 0.055 0.040 0.015 

Ave. UB 0.211 0.054 0.039 0.015 

Open ocean 0.100 0.010 0.009 0.001 

Coastal ocean 0.250 0.066 0.058 0.008 

 

 

Figure 7. Monthly mean of surface chlorophyll-a concentration derived from MODIS-aqua in 

the Ulleung Basin in August, 2007 
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Berger et al. (1989) suggested the proportions of IF, RF, and BF to primary 

production in the world open ocean and coastal ocean. In the world open ocean and 

coastal ocean benthic boundary layer, IF/PP ratios are about 0.010 and 0.066, 

respectively. In the UB deep benthic boundary layer, IF/PP ratio is 0.054 (Table 2). In 

the UB, the POC input to the benthic boundary layer is 5 times higher than in the world 

open ocean. In the world open ocean, coastal ocean, and UB sediments, RF/PP ratios 

are about 0.009, 0.058, and 0.039, respectively. The BF/PP ratios are 0.001, 0.008, and 

0.015 in the open ocean, coastal ocean and UB, respectively (Table 2). Over 1% of 

primary production is buried on the UB sediment. It is a very rare case in the world 

coastal ocean and open ocean. Although a large value of IF in the coastal ocean 

sediment does not contribute significantly to carbon removal. In the coastal area, about 

90% of OC deposited in sediments is remineralized, and returned to the water mass with 

CO2. In the UB sediment, however, only approximately 80% of the deposited OC is 

remineralized and approximately 20% is buried. It is important that the UB play a 

significant role in deep ocean carbon storage. 

Conclusion 

The UB sediment of E/JS are characterized by high OC contents and high IF of OC. 

High OC contents (over 2.5%) and high IFs in the deep basin sediments have rarely 

been found, except for the Black Sea deep basin and intense upwelling areas. The high 

OC content appeared to result from high export production at surface water in UB. A 

mean organic matter C/N molar ratio is 7.09, indicating that the organic matter is 

predominantly of marine origin. The ASRs calculated by activities of excess 210Pb were 

ranged between 0.036-0.047 cm year-1. The MARs calculated from the ASR and GD, 

ranged between 131-184 g m-2 year-1 and agree well with mass flux determined by the 

previous time-series sediment trap result (122 g m-2 year-1). The IF and BF estimated by 

the MAR were ranged between 7.89-11.08 gC m-2 year-1, 2.02-3.10 gC m-2 year-1, 

respectively. The RF estimated by OCR were ranged 6.22-6.59 gC m-2 year-1, but RF 

calculated by subtracting BF from IF were ranged between 5.87-7.98 gC m-2 year-1. The 

average IF/PP, RF/PP and BF/PP ratios of UB sediments were 0.054, 0.039, and 0.015, 

respectively. 

In the UB, high proportion exported to the deep ocean with organic carbon produced 

by the primary production, high efficiency deposited to the deep boundary layer, high 

efficiency buried in the sediment. The UB might play an integral role in the deposition 

and removal of organic carbon. The area of E/JS is only 0.3% of the world ocean, 

however, may play a fundamental role in the global carbon cycle. These results show 

promise in terms of carbon cycle in the regions with high production input. The 

combined data on the in-situ and remote-sensing data clearly reproduce the 

understanding of the spatial and temporal pattern than is possible by using hydrographic 

cruise data. This approach is particularly important for interpreting deep waters in the 

regional and/or global scales. 
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