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Abstract. The relationship between land surface temperature (LST) and land use patterns has long been 

explored to understand the impact of urbanization on the urban heat island effect. This paper reports the 

geographically weighted regression method. The LST is derived from the radiation transfer model and the 

urban reflectance is grouped into three types from the linear spectral mixture in Nanjing City, China. The 

high LST on October 3, 2009 in the central city, suburbs, outer suburbs, and outer suburbs near water 

were 44, 40, 36, and 33°C, respectively. The LSTs of the central city in spring, summer, and autumn were 

1–5°C higher than that of the suburbs. The high absorption coefficient of vegetation, substrate, and dark 

surfaces with LST were -0.80, 1.05, and -1.64, respectively. The promoting role of impervious surfaces is 

much higher than the cooling effects of vegetation on LST. Water surfaces have a more obvious effect on 

adjusting LST. If the landscape diversity index or the fragment index are low, the vegetation cover has a 

more noticeable negative correlation with LST. The way in which LST relates to land reflectance and to 

landscape provides a quantitative reference for urban planning of sustainable development in Nanjing. 

Keywords: spectral unmix, heat island, landscape indices, Nanjing, radiative transfer equation 

Introduction 

The main feature of the urban heat island effect is that the LST in central urban areas 

is higher than that in the suburbs (Landsberg, 1831). In the study of the urban heat 

island pattern, remote sensing data for land surface temperature (LST) inversion were 

mainly gathered by the National Oceanic and Atmospheric Administration's Advanced 

Very-High-Resolution Radiometer (AVHRR), Moderate Resolution Imaging 

Spectroradiometer (MODIS), Landsat Thematic Mapper/Enhanced Thematic Mapper 

(Landsat TM/ETM), and Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER). The urban area is firstly determined using the temperature 

difference between the urban and rural surface detected by AVHRR (Rao et al., 1972). 

Heat island intensities from AVHRR data are highest in the day time and in the warm 

season for towns in North America (Roth et al., 1989). Qin et al. (2001 a,b) proposed a 

single window algorithm for Landsat TM/ETM and modified the land temperature 

inversion algorithm for MODIS. ASTER data is optimized using a neural network 

algorithm (Mao et al., 2008). A split window algorithm is provided for Landsat 8 and 

the root mean square is determined as 0.93°C (Rozenstein et al., 2014). When the urban 

reflectance is known, the algorithms are divided into three types; the single-channel 

method (Coll et al., 2012), the multi-channel method (Atitar and Sobrino, 2009), and the 

multi-angle method (Sobrino and Jiménez-Muñoz, 2005). When the urban reflectance is 

not known, the algorithms are again divided into three types, but which differ from the 

preceding case; the stepwise retrieval method (Sobrino et al., 2008), simultaneous 
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retrieval (Hulley and Hook, 2011), and simultaneous retrieval with unknown 

atmospheric information (Wang et al., 2013). 

In a related analysis of the spatiotemporal characteristics of LST, the urban heat 

island magnitude is considered to be inversely correlated with the rural temperature 

(Streutker, 2002). The intensity of the urban heat island reached a maximum during the 

summer and a minimum during the winter periods. The overall relationship between 

urban heat island and population density have been quantitatively explored (Li et al., 

2012). The minimum temperature difference formed at the end of the cooling process 

increases with urban length and while wind speed is on the decline (Lee et al., 2012). 

The LST has been increasing in recent years, with an increase of LST in both rural and 

urban areas (Rajasekar and Weng, 2009; Alavipanah et al., 2015; Fu and Weng, 2016a; 

Haashemi et al., 2016). 

By predicting the urban expansion pattern of cities in the Pearl River Delta of China 

and considering the LST and urban reflectance patterns, the radiation temperature is 

expected to increase by 13.01 K (Weng, 2001). LST possesses a more negative relation 

with the unmixed vegetation abundance than with the normalized difference vegetation 

index (NDVI) across the spatial resolution from 30 m to 960 m (Weng et al., 2004). The 

NDVI can be easily influenced by leaf area, view angle, and soil background, thus, it is 

not a suitable indicator for quantitative vegetation research (Small, 2001). The three-end 

members of substrate, vegetation, and dark surface, can represent more than 95% of the 

30 million ETM+ image spectra with misfits of less than 0.04 (Small, 2004, 2005). 

There is a negative relation between LST and vegetation abundance, and a positive 

relation between LST and impervious surface. The rates of change of low and high 

temperatures differ depending on the impervious surface abundance (Small and Lu, 

2006). The heat island effect is more noticeable in industrial and commercial areas 

(Zhang et al., 2012). The LST is expected to increase by 2.63°C by overall regression, 

and 3.17°C from geographically weighted regression, and additionally, according to an 

analysis of the accuracy the overall regression underestimates the heat island effect and 

its risks (Su et al., 2012). High-intensity urban land in Atlanta has the highest mean LST 

value of 294.9 K with a yearly amplitude of 17.4 K (Fu and Weng, 2016b). Information 

support systems for urban heat landscape have been proposed to simulate the urban heat 

island and mitigate these effects (Quattrochi et al., 2000). Landscape indices can also be 

used to predict the LST. The landscape dominance index and the landscape shape index 

account for 56% and 6–12% of the variance of the LST, respectively (Chen et al., 

2014). 

In spite of these significant studies, there are few studies of the regional arithmetical 

relation between LST and urban reflectance. Using Landsat TM/ETM imagery of 

Nanjing City, this study aims to illustrate the quantitative relation between LST and 

urban reflectance Specific objectives of this study are as follows: (1) to derive the LST 

and analyze its temporal, spatial, and fractal characteristics. (2) to apply linear spectral 

unmixing to analyze the urban reflectance of vegetation, substrate, and dark areas. (3) to 

investigate the relation between LST and vegetation, substrate and dark abundance 

using geographically weighted regression (GWR). This research also investigates the 

relation between LST and the enhanced vegetation index (EVI) under landscape 

diversity indices and fragment indices. 
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Materials and Methods 

Study Sites 

Nanjing City is in the central region of the Yangtze river downstream at 

118°22′-119°14′E, 31°14′–32°37′N in Jiangsu province. The total area of Nanjing City 

was 6597 km2, with 1427.81 km2 of built area in 2018. Nanjing City has a humid 

subtropical climate. The average, maximum (summer), and minimum (winter) 

temperatures, are 15.4, 39.7, and -13.1°C, respectively. Rainfall averages 1006 mm per 

annum. Nanjing's geomorphology is primarily characterized by low mountains and low 

hillocks, with 3.5% low mountains, 4.3% hilly areas, 53% low hillocks, and 39.2% 

plains and rivers (Li et al., 2016). The natural vegetation is mixed deciduous forest and 

broadleaf evergreen forest. Nanjing includes seven districts, Central, Jiangning, Qixia, 

Pukou, Liuhe, Lishui, and Gaochun districts, respectively (Fig. 1). 

 

Figure 1. Nanjing City of China. There are seven districts in Nanjing. 

 

 

Nanjing is the Capital of Jiangsu province with nearly 2000 years of history. The 

GDP of Nanjing was 972.08 billion yuan in 2015, ranking 11th in China. In 2015 

Nanjing's industrial infrastructure account for 2.4% in primary industry, 40.3% in 

secondary industry, and 57.3% in tertiary industry. Nanjing's resident population in 

2015 was 8.24 million and the urbanization rate was 81.4%. The reform and open policy 

of the 1980s produced a rapid urbanization phase and further encroachment on the 

countryside. The Nanjing Plan of 1991-2010 proposed new towns around the main old 

city (Jim and Chen, 2003). 

Data 

The data sets were downloaded from the United States Geological Survey (USGS) 

website (http://glovis.usgs.gov/ accessed 7th March 2019). 22 Landsat images are used 

to derive the LSTs in Nanjing (Table 1). The Landsat TM image obtained on May 20, 

2006 is utilized to derive the landscape diversity indices and fragment indices. The 

Landsat image obtained on October 3, 2009 is utilized to derive the fractions of 

substrate, vegetation, and dark surface land cover by linear spectral unmixing. 

http://glovis.usgs.gov/
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Table 1. Dataset of Landsat images used without cloud or less than 5% cloud 

Data set Date 

LandSat TM 5 04/17/2000 

LandSat TM 5 10/10/2000 

LandSat TM 5 0d4/04/2001 

LandSat ETM 7 07/17/2001 

LandSat ETM 7 02/10/2002 

LandSat TM 5 07/12/2002 

LandSat TM 5 09/30/2002 

LandSat ETM 7 10/24/2002 

LandSat ETM 7 11/09/2002 

LandSat ETM 7 12/27/2002 

LandSat ETM 7 01/28/2003 

LandSat TM 5 02/08/2004 

LandSat TM 5 11/22/2004 

LandSat TM 5 12/08/2004 

LandSat TM 5 04/02/2006 

LandSat TM 5 05/20/2006 

LandSat TM 5 03/20/2007 

LandSat TM 5 05/07/2007 

LandSat TM 5 10/03/2009 

LandSat TM 5 08/19/2010 

LandSat TIRS 8 08/11/2013 

LandSat TIRS 8 10/14/2013 

 

 

Methods 

Radiative transfer equation 

The LST is obtained using the radiative transfer equation from the following 

expression (Berk et al., 1987; Sobrino et al., 2004). 

 

  (Eq.1) 

 

where Lsensor is the at-sensor radiance above the atmospheric radiance, ε is the urban 

relectance, τ is the total atmospheric transmissivity between the land surface and the 

sensor,  and  are the downwelling and upwelling atmospheric radiances, and  

is the blackbody radiance given by Planck's law. 

The formula for the actual temperature, T is as follows: 

 

  (Eq.2) 

 

where K1 and K2 are constants. For Landsat TM, K1 = 607.66 and K2 = 1260.56, and 

for Landsat ETM, K1 = 666.09 and K2 = 1282.71. 

 

  (Eq.3) 

 

where TM4 and TM3 are the near the infrared and red bands, respectively. 

 

  (Eq.4) 

 

  (Eq.5) 
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  (Eq.6) 

 

where  is the percentage of vegetation cover, and  and  represent the 

emissivities corresponding to the natural and urban surfaces, respectively. 

Linear spectral mixture model 

The linear spectral mixture model assumes that the spectral reflectance of the field of 

view of a sensor can be expressed as a linear combination of the constituent end 

members (Small and Lu, 2006). 

 

  (Eq.7) 

 

where  is the observed reflectance,  is the wavelength,  is the spectrum of the 

end members,  is a coefficient representing the abundance of the corresponding end 

members. 

The linear spectral mixture has two significant problems. One is to determine the 

number of end members related to surface reflectance. Another one is to determine the 

reflectance spectrum of end members. Linear spectral mixture models can be 

standardized by using end members that span the global mixing space. The mean 

substrate, vegetation, and dark end members can be used to define a global standard 

mixture model for Landsat spectra (Clement et al., 2009; Small and Milesi, 2013). 

Geographically weighted regression 

Geographic weighted regression is an extension of the traditional global regression 

because it allows for local regression rather than global parameter estimation 

(Fotheringham et al., 2001). The GWR method is also applied to LST and 

environmental driving factors (Buyantuyev and Wu, 2010; Zhou and Wang, 2011; 

Schwarz et al., 2012; Du et al., 2016). 

The equation for the GWS model is: 

 

  (Eq.8) 

 

where  is the coordinate of the i-th point,  is the k-th regression 

parameter of the i-th point, and  is the random error of the i-th sample. 

Data near the i-th point will have a more profound effect on  than data 

further away. 

 

  (Eq.9) 
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where  represents the unbiased estimate of β,  is a weight function, 

which ensures that observation points close to the specific point will have a large 

weight. 

 

  (Eq.10) 

 

where  is the weight of observation point j related to the point i. 

If the observation point j coincides with point i, the weight of point j is 1. If the 

distance between points j and i is greater than the bandwidth, the weight of point j is 

zero. Thus, the GWR model takes the bandwidth into account. 

Landscape indices 

The land surface is classified into five types by an un-supervised classification 

method and checked with Google Earth, including farmland, forest, water areas, 

construction land and other land. Based on the land classification, landscape diversity 

and Landscape fragmentation indices are calculated by fragstas. 

Results 

The Character of Urban Reflectance and LST 

The urban reflectance is classified into three types by linear spectral unmixing, including 

the substrate fraction (Fig. 2a), vegetation fraction (Fig. 2b), and dark fraction (Fig. 2c). The 

LST is inversed by radiation transfer model in Nanjing City on October 3, 2009. 

 

Figure 2. The urban reflectance and LST in Nanjing City on October 3, 2009. The fraction of 

impervious surface from 0-100% (Fig.2a). Vegetation fraction (Fig.2b). Water Fraction 

(Fig.2c). LST (Fig.2d) 

 

 

High impervious surface fractions are mainly distributed in the middle and the north 

part of Nanjing City (Fig. 2a). The central city of Nanjing is in the center along the 

Changjiang river. With urbanization, the impervious surface is gradually extending in 
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the northerly direction. Low vegetation surface fractions are in the center of Nanjing 

City and some is also observed in the north (Fig. 2b). The vegetation in cultivated areas, 

forest parks, and undeveloped remote areas in the outer suburbs is less disturbed. High 

water surface fractions are in the middle and in the south, and correspond to the Yangtze 

river and Gucheng lake, respectively (Fig. 2c). Nanjing City with the high LST 

observed on October 3, 2009 is in the center of Nanjing (Fig. 2d). The high temperature 

area is larger than the area of the high impervious surface fraction. With the rapid 

progress of urban construction in Nanjing, the city is subject to a large number of 

anthropogenic heat sources, including fuel combustion, automobile exhaust, and air 

conditioning, increasing the air temperature. The development of commercial and 

service industries in Nanjing has resulted in business areas with dense population. These 

areas are have high densities so the heat is not easy to diffuse. 

Characteristics of the spatial dimension of LST 

Taking the city of Nanjing as the center, and extending to the north, east, south, and 

west we make a temperature profile for October 3, 2009 (Fig. 3). The LST profile 

serves to observe the general characteristics of LST and horizontal distribution trends. 

The section of the profile running from north to central urban (Fig. 3a), has a low 

temperature of approximately 24°C, corresponding to the Yangtze River basin, and the 

profile continues from central urban to the south (Fig. 3b). 

 

Figure 3. Spatial sectional view of LST in Nanjing on October 3,2009. From north to Central 

direction (a). From central to south direction (b). From east to central direction (c). From 

central to west direction (d) 

 

 

The junction of the urban and rural areas has a low temperature because of high 

vegetation cover. The section of the profile running from east to central urban (Fig. 3c) 

and the corresponding place of low temperature is the junction of urban and rural areas. 

The section of the profile running from central urban to east (Fig. 3d) has a low 
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temperature of about 26°C. As a result, the temperature in central urban is higher by 

8-6°C than that in Yangtze River and urban-rural junction with high vegetation cover. 

Characteristics of the temporal dimension of LST 

LST time series data from April 17, 2000 to October 14, 2013 is selected in the 

central city (Fig. 4a), the suburbs (Fig. 4b), the outer suburbs (Fig. 4c), and the outer 

suburbs near a lake (Fig. 4d) of Nanjing City (Fig. 4e). The high LST is 44°C in central 

city, 40°C in suburbs, 36°C in outer suburbs, and 33°C in outer suburbs near water. 

During the fourteen years of the presented time series data, urban development has 

expanded to the suburbs and impacted its LST. The land surface of the outer suburbs is 

less disturbed by humans and the LST is 5°C lower than that in central urban. The LST 

in the outer suburbs near the lake is lower than that in the outer suburbs, mainly because 

of the influence of the water surface. 

 

Figure 4. Time series of LST in Nanjing from Year 2000-2013. Time series curve in central 

urban (Fig.4a). Time series curve in suburbs (Fig.4b).Time series curve in outer suburbs 

(Fig.4c). Time series curve in outer suburbs near lake (Fig.4d). Sample position map (Fig.4e) 

 

 

Characteristics of the fractal dimension of LST 

From 2000 to 2010, the LST of the central city in spring, summer, and autumn was 

1-5°C higher than that of the suburbs (Jiangning, Qixia, and Pukou districts) and outer 

suburbs (Liuhe, Lishui, and Gaochun districts), for example, on July 12, 2002 and May 

7, 2007 (Table 2). 

 
Table 2. Zoning LST in Central urban, suburbs (Jiangning District, Qixia District, and 

Pukou District) and outer suburbs (Liuhe District, Lishui District, and Gaochun District) 

from 2000 to 2010. (Units: ºC) 

 District 

Date Central Jiangning Qixia Pukou Liuhe Lishui Gaochun 

2000/04/17 25.38 23.41 24.12 23.96 24.48 22.96 22.37 

2000/10/10 32.63 30.74 31.02 31.77 31.02 31.74 31.73 

2001/04/04 22.00 20.00 20.28 20.29 19.98 18.80 16.71 

2001/07/17 35.43 31.67 33.34 32.04 31.35 31.58 29.60 

2002/02/10 11.16 10.60 11.12 11.00 10.77 10.61 10.32 

2002/07/12 41.33 36.16 40.56 36.15 35.53 37.60 35.98 

2002/09/30 29.62 28.00 27.75 29.55 28.34 27.84 26.34 
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2002/10/24 20.90 20.01 19.68 20.65 20.03 20.09 20.80 

2002/11/09 15.98 15.97 15.88 16.43 16.43 15.87 16.18 

2002/12/27 2.11 2.57 2.30 2.60 1.92 2.61 2.00 

2003/01/28 3.18 3.20 3.20 3.40 2.03 2.78 2.00 

2004/02/08 11.74 12.60 12.34 12.65 11.66 12.18 12.10 

2004/11/22 16.53 16.71 16.12 16.26 16.33 17.11 16.60 

2004/12/08 11.85 11.71 11.98 11.97 11.40 11.82 11.40 

2006/04/02 27.31 26.00 24.74 25.24 24.80 23.96 23.08 

2006/05/20 32.30 30.65 30.27 30.68 31.67 30.00 30.62 

2007/03/20 18.14 16.71 17.72 17.06 16.60 16.02 15.02 

2007/05/07 33.74 29.65 30.30 29.87 30.43 28.51 26.00 

2009/10/03 28.56 27.37 28.14 27.41 27.21 27.20 27.16 

2010/08/19 34.22 30.52 32.68 30.60 29.75 29.63 29.54 

 

 

In winter, the LST is less than or close to that of the suburbs and the outer suburbs, 

such as on December 27, 2002 and February 8, 2004. 

Comparing the LST of different years, the intensity of the heat island effect is 

decreased on May 20, 2006 and October 3, 2009. During the period 2007-2010, the LST 

difference between central urban and outer suburbs is small because urbanization has 

led to the expansion of urban space, thus the intensity of the heat island effect is 

relatively weakened. 

Relationship between LST and Land Cover 

In the GWR method, local R2 and standard residuals provide the criteria for judging 

the degree of fit to observational data. Local R2, ranges from 0 to 1, and indicates the 

degree of local regression of the simulation for the observed values. Higher values 

indicate that the local regression model fits the results well, and lower values less-well. 

The coefficients represent the relationship between the two variables of LST and 

vegetation surface, and the related directions. The residual represents the difference 

between the observed and estimated values. The standard residual is zero. 

Fig. 5 shows the correlation between LST and vegetation based on the GWR, in 

which the LST is the dependent variable and the vegetation abundance is the argument. 

High local R2 represents a strong correlation, and mainly occurs in the central area of 

Nanjing and the suburbs (Fig. 5a). 

 

Figure 5. Correlation between LST and vegetation based on geographically weighted 

regression model in October 2009 in Nanjing City. Fig.5a is Local R2. Fig.5b is Coefficients. 

Fig.5c is StdResid 

https://www.baidu.com/link?url=ECTeODKLrmDsMTFcQ8YRM3J0ZpKpLUn3ohx7HKZd5dUHyQA6En4ri-b9IJPnQTbsyJmzg7Y72yIr2XlHTVrr7WjEp6X1TSiTdJTmGrDKaHK&wd=&eqid=adf8c34e000004b10000000457d251e7
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Lower local R2 represents a relatively weak geographic linear correlation, and mainly 

occurs in the south and north of Nanjing. Vegetation in the Central district of Nanjing 

showed a stronger negative correlation with LST and the coefficient ranged from -0.8 to 

-0.542 (Fig. 5b). Vegetation abundance in the outer suburbs displayed a weak negative 

correlation with the LST. The distance from the central district has a significant impact 

on the relationship between vegetation and LST. Positive residuals represent a high 

predictive value and negative residuals a low value (Fig. 5c). On the whole, the standard 

residuals are distributed in an apparently random pattern, and all residual values are 

lower than four, thus the overall model fit well. 

Figure 6 shows the correlation between LST and impervious surface abundance 

based on GWR. The high R2 is mainly distributed in the central district and southern 

suburbs of Nanjing where the LST and impervious surface have a strong correlation 

(Fig. 6a). The coefficient of LST and impervious surfaces are all positive, showing a 

significant positive correlation (Fig. 6b). The coefficients in the urban center range from 

0.803 to 1.045. The impervious surface has a significant impact on land surface 

warming. Absolute values of the majority of standard residuals are lower than 1, 

indicating that the model fit very well (Fig. 6c). 

 

Figure 6. Correlation between LST and impervious surface based on geographically weighted 

regression model in October 2009 in Nanjing City. Fig.6a is Local R2. Fig.6b is Coefficients. 

Fig.6c is StdResid 

 

 

Comparing Fig. 5b to Fig. 6b, the coefficients in the central district for vegetation 

and impervious surfaces range from -0.800 to -0.542 and from 0.803 to 1.045, 

respectively. The promoting role of impervious surface is much higher than the cooling 

effects of vegetation on LST. 

Figure 7 shows the correlation between LST and water from GWR, in which the 

LST is the dependent variable and water abundance is the argument. The high R2 is 

mainly distributed in the middle and north of Nanjing in the proximity of the Yangtze 

River and Gucheng Lake (Fig. 7a). The high local R2 reaches 0.538 indicating that there 

is a good fit between LST and water. The coefficients in the south and middle of 

Nanjing are negative valued which signifies a negative correlation between LST and 

water (Fig. 7b). Along the Yangtze River, the coefficients are low (-1.64 to -1.07), thus, 

the Yangtze River forms a band which impedes heat transfer, and further slows down 

https://www.baidu.com/link?url=ECTeODKLrmDsMTFcQ8YRM3J0ZpKpLUn3ohx7HKZd5dUHyQA6En4ri-b9IJPnQTbsyJmzg7Y72yIr2XlHTVrr7WjEp6X1TSiTdJTmGrDKaHK&wd=&eqid=adf8c34e000004b10000000457d251e7
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the urban heat island effect. The absolute value of the standard residuals is less than four 

signifying that the model fit well (Fig. 7c). 

Comparing Fig. 5b to Fig. 7b, the low coefficients for vegetation and water surface 

fitting with LST are -0.8 and -1.64, respectively, thus the water surface has a more 

obvious effect on adjusting the LST than the vegetation. 

Relationship between LST and Landscape Indices 

Landscape indices can describe the detailed pattern of the land surface. Landscape 

diversity indices include patch richness density and Shannon’s diversity index. 

Landscape fragmentation indices include number of patches, patch density, division and 

splitting indices. These indicators are selected to reflect different aspects of landscape 

features and to verify the accuracy of the indicators (Table 3). 

The Shannon’s diversity index of the central city is 1.1691, and is the smallest of all 

districts. Diversity indices of the suburbs (Qixia, Pukou, and Jiangning districts) are 

1.4072, 1.4287, and 1.4270. Diversity indices of the outer suburbs (Lishui, Liuhe, and 

Gaochun districts) are 1.4848, 1.4288, and 1.5037. 

The division index of the central city is 0.7664, and is the smallest of all districts. 

Division indices of the suburbs (Qixia, Pukou, and Jiangning districts) are 0.8819, 

0.9737, and 0.9777. Division indices of the outer suburbs (Lishui, Liuhe, and Gaochun 

districts) are 0.9853, 0.9723, and 0.9677. 

 

Figure 7. Correlation between LST and water surface based on geographically weighted 

regression model in October 2009 in Nanjing City. Fig.7a is Local R2. Fig.7b is Coefficients. 

Fig.7c is StdResid 

 

 
Table 3. Landscape index in Nanjing zones on May 20, 2006 

District 

Landscape indices 

Number of 

patches 
Patch density Division index 

Splitting 

index 

Patch 

richness 

density 

Shannon's 

diversity index 

Lishui 99019 92.93 0.9853 68.08 0.0047 1.4848 

Liuhe 132821 90.08 0.9723 36.15 0.0034 1.4288 

Pukou 80495 88.72 0.9737 37.96 0.0055 1.4287 

Qixia 20283 51.79 0.8819 8.46 0.0128 1.4072 

Central 18084 50.19 0.7664 4.28 0.0139 1.1691 

Jiangning 147583 91.91 0.9777 44.84 0.0031 1.4270 

Gaochun 69328 86.29 0.9677 30.95 0.0062 1.5037 
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The diversity index in the central city is lowest of all, and the LST and EVI display a 

significant negative correlation. Diversity indices in the suburbs are in the middle value 

of all. The LST and EVI have a weak negative correlation (Fig. 8). Diversity indices in 

the outer suburbs are the largest of all the sites, and the LST and EVI show substantially 

no linear correlation. 

If the landscape diversity indices are smaller, the LST has a more obvious negative 

correlation with the vegetation index. Conversely, if the landscape diversity indices are 

greater, the LST response to the vegetation index is weaker. 

Similarly, if landscape fragmentation indices are smaller, the LST has a more 

obvious negative correlation with the vegetation index. Conversely, if landscape 

fragmentation indices are greater, the LST response to the vegetation index is weaker. 

 

Figure 8. The relation of LST and enhanced vegetation index (EVI) under different landscape 

indexes in Nanjing zones. X axis is enhance vegetation index and Y axis is LST 

 

 

Conclusions 

In the spatial dimension, the high temperature is in the central city, and the low 

temperature is in the suburbs and the Yangtze River, and there was a 6-8°C temperature 

difference on October 3, 2009. In the temporal dimensional, the maximum LSTs in the 

central city, suburbs, outer suburbs and outer suburbs near water are 44, 40, 36, and 

33°C, respectively. In the fractal dimension, the LST of the central city in spring, 

summer, and autumn is 1-5°C higher than that of the suburbs. In winter, the LST of the 

central city is less than or close to that of the suburbs. 

In the quantitative relation between the LST and urban reflectance, vegetation in the 

Central District of Nanjing showed a stronger negative correlation with LST and the 

coefficient is -0.8. Impervious surface in the central district of Nanjing displayed an 

extinctive positive correlation with the LST and the highest coefficient is 1.045. The 

promoting role of impervious surface is considerably higher than the cooling effects of 

vegetation on LST. The water surface of Gucheng Lake had a negative correlation with 

LST and a low coefficient of -1.64. The water surface has a more obvious effect on 

adjusting the LST. 

The landscape diversity indices and fragmentation indices have a negative 

relationship with both the LST and vegetation index. If the landscape diversity indices 

are smaller, the LST has a more noticeable negative correlation with the vegetation 
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index. Similarly, if the landscape fragmentation indices are smaller, LST has a more 

obvious negative correlation with the vegetation index. 

Discussions 

In this research, the GWR model is utilized to explore the scale-dependent and 

spatial non-stationary relationships between LST and urban reflectance. In the GWR 

model, the strength of the regression relationships increased significantly, with a mean 

of 59% of the changes in LST values explained by the predictors, compared with only 

43% using the ordinary least squares model (Li et al., 2010). The most important 

problem for the GWR method is to set the local regression parameters and select a 

suitable bandwidth, which involves the problem of spatial autocorrelation. Here the 

local regression parameters are set to be adaptive and not consider the spatial 

autocorrelation factor. However, spatial autocorrelation is a key issue for future 

research. The land cover and land surface temperature have the same trend with the 

published paper (Liu et al., 2016; Wang et al., 2018). 

Scaling is another important factor effecting the relationship between landscape 

patterns and LST. Thirty meters was found to be the optimal resolution in the study of 

the relationship between urban relectance and LST classes. Ninety meters was found to 

be the optimal spatial resolution for assessing the landscape-level relationship between 

land cover and LST patterns (Liu and Weng, 2009). Here the Landsat dataset of 30 

meters resolution was selected to derive the LST. 

The impact of urbanization on the urban heat island can be mitigated not only by 

balancing land use patterns, but also by optimizing the spatial landscape (Zhou et al., 

2011). Landscape patterns can determine the land function. The same amount of 

vegetation cover in different landscape patterns will play a different role in slowing 

LST. The composition metric alone explains about 56% of the landscape mean LST. 

Whereas, adding a configuration explains approximately another 6–12% (Chen et al., 

2014). Here we study the correlation between LST and vegetation index under different 

landscape index conditions; a focus of research on the quantitative relation between 

LST and urban landscape pattern. 
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