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Abstract. Estimating the soil content using near infrared (NIR) spectroscopy with an appropriate method 

of multivariate regression analysis, is a rapid and nondestructive testing technique with the virtue of high 

analysis speed and easy operation. Partial least squares (PLS) and least square support vector machine 

(LS-SVM) as the existing models widely used in other studies were improved and employed to develop an 

optimal regression model for the prediction of typical soil nutrient in Wuling mountain, Hunan Province, 

including total nitrogen, available phosphorus, and organic carbon. The performance of models established 

in this research was assessed by the coefficient of determination (R) and the root mean square error of 

calibration (RMSEC) and prediction (RMSEP). The result showed that the pre-processing method 

MSC+SG displayed the highest R values in PLS and LS-SVM models, which were 0.89 and 0.91, 

respectively. However, compared to the PLS model, LS-SVM displayed more desirable performance on 

the predictions. The RSMEC and RMSEP values of LS-SVM (4.84 and 4.75, respectively) were much 

better compared to PLS (6.15 and 6.58, respectively). 

Keywords: near infrared spectroscopy, chemometrics, soil nutrient analysis, prediction models, partial 

least squares 

Introduction 

Soil nutrients are crucial for plant growth. The traditional analysis methods in laboratory 

restrict sample numbers due to the exhausting test time. Investigating the nutrient content 

in laboratory is time-consuming and demands considerable expenses. In the past decades, 

researches have been implemented to estimate the soil nutrient content from reflectance in 

the near infrared ranges (vis-NIR, 700-2500 nm) since spectrum data in the vis-NIR range 

has been proved to be reasonably accurate and fast in practical applications (Chung et al., 

2015; Chen et al., 2017; Sampaio et al., 2018). With the development of chemometric 

methods and combination with NIR spectroscopy practices, these techniques have been 
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extensively applied to estimate soil nutrient content, such as total nitrogen, available 

phosphorus, and organic carbon (Pandit et al., 2010; Kwon et al., 2014; Sudarno et al., 2017; 

Yu and He, 2017). Compared with traditional test methods, the NIR spectroscopy 

techniques are not only cost- and time-effective, but also non-destructive, and demand no 

chemical reagents during the measurement (Al-Harrasi et al., 2017; Genisheva et al., 2018). 

Ecological environment monitoring requires rapid investigation and response to the drastic 

change of soil properties. Therefore, NIR spectroscopy techniques as promising test 

methods used in ecological environment monitoring will be effectively monitoring the 

change of soil properties in certain areas. 

Partial least squares (PLS) regression is a statistical method, associated with principal 

component regression (PCR) (Yang and Ying, 2011). However, it is not to find the 

hyperplane of the minimum variance between dependent and independent variables, but to 

find a linear regression model by projecting predictive variables and observational variables 

into a new space. Under one algorithm, PLS can combine multiple linear regression (MLR), 

principal component analysis (PCA) and correlation analysis between two groups of 

variables together (Suykens and Vandewalle, 1999; Stella et al., 2015). PLS is a regression 

modeling method of multiple dependent variables for multiple independent variables, 

which can solve many problems that cannot be solved by ordinary multiple regression. 

Support vector machine (SVM) is a new general learning method proposed by Vapnik et 

al. (1997) according to statistical theory. It is based on the VC dimension (Vapnik 

Chervonenks Dimension) theory of statistical theory and the structural risk minimization 

principle. It can solve small sample, nonlinear, high dimension and local minima better. 

Practical problems such as classification, function approximation and time series prediction 

have become one of the hotspots in machine learning. Least square support vector machine 

(LS-SVM) is an improvement of SVM. Contrasted to the standard SVM model, this method 

has obvious advantages: (1) using equality constraints rather than inequality constraints in 

standard SVM algorithm; (2) transforming quadratic programming problem into solving 

linear equations directly (Suykens and Vandewalle, 1999; Li et al., 2017). 

In China, a large sum of farmland has been converted to forests under the policy of 

returning farmland to forests in the past two decades. A lot of studies focused on the effects 

of this policy on ecosystem processes. However, little concerns were cast on the influence 

on the change of soil content, especially in hilly erosion areas. Therefore, the object of this 

paper is to evaluate the performance of PLS and LS-SVM modeling techniques to predict 

the typical nutrient content in soil, including total nitrogen, available phosphorus, and 

organic carbon content of soil sampled in the hilly erosion area of Cili where is located in 

Wuling mountain area of Hunan Province. 
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Materials and Methods 

Soil sampling and laboratory analysis 

The sample sites where the soil samples collected were in Liangxi Village, Wuling 

mountains of West Hunan Province in China (E111°12′42.836″, N29°25′27.582″), about 

7 km northwest of Cili County. The annual average temperature and precipitation in this 

location are 18.1°C and 1436 mm, respectively. The landscape mainly includes mountains, 

posts and plains, in which is dominated by red soil, and the layer of soil is more than 80 

cm. The forest in the sample sites is a concentrated area of returning farmland to forest, 

due to its coverage rate in this area over 80%, and the vegetation types oriented at 

returning farmland to forests and secondary forests. In this area the soil parent rock is 

mainly sand shale, and the soil is primarily yellow-red soil and acid soil. Pinus 

massoniana forest, Eucommia ulmoides forest, Citrus reticulata and miscellaneous shrub 

forest are the dominant vegetation types in and around the sampled sites. All samples 

were taken randomly from 0-50 cm below the ground. In May 2018, the soil of this 

location was sampled in 29 different sites spanning mainly alongside the Li River, which 

was illustrated in Fig. 1. All soil samples of laboratory analysis were performed in 

accordance with Chinese Standards, including GB 9834, NY/T 1121.7, and HJ 615. 

 

Figure 1. The location of the sites sampled: Cili, Hunan Province 

 

 

Optical measurement 

Vis-NIR spectra from 400 nm to 2500 nm, 2 nm/step with 1050 points was obtained 

by using Antaris II FT-NIR spectrometer (Thermo Fisher Scientific, the United States) 

charged with a sample cup. Every spectrum of all soil samples was collected with an 

average of 32 scans with 16 references scans before each sample. 
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Spectral data pre-treatment 

It is prone to scatter effects for NIR spectroscopy when the samples are solid. The 

scattering effects are primarily caused by the distribution of sample size. Therefore, data 

pre-processing was crucial to establish the best models. The pre-processing techniques 

applied in this paper were standard normal variate (SNV), multiplicative scatter 

correction (MSC), 1st derivative using the Savitsky-Golay (SG) routine with 7 points and 

a 3rd order polynomial fitted to the data. All pre-processing steps were performed in 

Unscrambler X 10.4 (CAMO Software Inc., USA). 

Comparison of calibration algorithms 

In order to predict the of the soil nutrients content from the NIR spectrum data demands 

the calibration of the NIR spectra and the laboratory analysis values of soil nutrients. In 

our research, PLS and LS-SVM were used and compared to construct models to predict 

soil nutrient content. The data of the matrices are comprised of NIR spectra that was 

dominated by X and the values of soil content including total nitrogen, available 

phosphorus, and organic carbon that dominated by the vector Y. 

Partial least squares regression 

PLS regression is applied widely and considered as one of the most common 

multivariate methods for the establishment of predictive models. Usually, multiple linear 

regression (MLR) is utilized to build prediction models with a lot of factors. However, 

once the factor number is getting too large, the model will be defined as over-fitting which 

means that the model fits the sampled data perfectly but fails to predict the new sample 

data well. Under such circumstances, there are many dominant factors, but there may be 

few latent factors that account for most of the variation in the response. The primary 

concept of PLS is to attempt to extract these latent factors, accounting for as much of the 

dominant factor variation as possible while constructing the perfect models to fit the 

responses well. Therefore, PLS is also called ‘‘projection to latent structure’’(Geladi and 

Kowalski, 1986; Tobias, 2017). 

Least square support vector machine 

LS-SVM is least squares version of SVM, which is a set of related supervised learning 

methods that analyze data and recognize patterns to be utilized for classification and 

prediction analysis. In these versions, the solution is obtained by solving a set of linear 

equations rather than a convex quadratic programming (QP) problem for classical SVMs 

(Suykens and Vandewalle, 1999). By this method, the improved LS-SVM avoids the 

complicated calculations of the classical SVMs. Also, it can also solve the problem of the 

multivariate calibration relatively fast and avoid over-fitting. 
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Evaluation of model performance 

The quantitative models between NIR spectral data and soil content were built by PLS 

and LS-SVM, respectively. The modeling parameters were optimized and evaluated by 

the root mean square error of calibration (RMSEC) and prediction (RMSEP), and the 

coefficient of determination (R). RMSE and R are defined as follow (Eq. 1 and Eq. 2). 
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(Eq.2) 

 

where n is the soil sample number in the validation test set, yi and �̂�𝑖 are the experimental 

data measured by laboratory analysis and the predictive results of the model for the 

corresponding test sample i, respectively. 

Results 

Soil content 

Table 1 summarizes the laboratory analysis values of total nitrogen, available 

phosphorus, and organic carbon of all 306 soil samples, which displays the calibration set 

and the validation set, respectively. The total nitrogen content for all the sets ranging from 

50.88 mg·kg-1 to 648.93 mg·kg-1, which has an average of 205.42 mg·kg-1. The contents 

of available phosphorus and organic carbon for all sets are varying from 0.81 mg·kg-1 to 

90.45 mg·kg-1 and 1.86 g·kg-1 to 25.44 g·kg-1, respectively. The average values of these 

two contents are 0.15 mg·kg-1 and 13.72 g·kg-1 separately. The mean values in these sets 

of total nitrogen, available phosphorus, and organic carbon content are similar to each 

other, while the standard deviations are also close to each other. Therefore, it can be 

confident in the validation. 

NIR spectrum of soil samples 

The original NIR spectrum (10,000-4000 cm-1) of soil samples are represented in Fig. 

2. NIR spectra displayed different degrees of migration or drift that made pretreatment 
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crucial for the establishment of prediction models with desirable performance. Moreover, 

the bands were broad and overlap, which made the spectrum difficult to interpret. 

Although the variables of the soil samples had quite a wide range of values, some useful 

information was represented in the vis-NIR region related to the total nitrogen, available 

phosphorus, and organic carbon of soil samples. There were mainly three absorption 

bands observed at 7083 cm-1, 5205 cm-1 and 4532 cm-1, among which 5205 cm-1 displayed 

the strongest absorption relevant with the combination of bending and stretching of 

hydroxyl group (O-H) of soil content (Cho et al., 1998; Cécillon et al., 2009; An et al., 

2015). The absorption band observed at 7083 cm-1 was owing to the combination of C-H 

second overtone and the first overtone of O-H anti-symmetric stretching of soil (Cécillon 

et al., 2009; Viscarra Rossel and Hicks, 2015). The NIR spectrum of soil also displayed 

a major absorption band at 4532 cm-1, due to the stretching and bending vibrations of C-

H groups linked to organic carbon (Douglas et al., 2018). 

 

Table 1. Statistic description of soil nutrition content 

 Data set Samples Min. Max. Mean Std dev. CV (%) 

Total nitrogen 

(mg·kg-1) 

Calibration set 204 50.22 614.51 201.39 15.25 114 

Validation set 102 51.45 652.26 213.51 16.11 112 

All data 306 50.88 648.93 205.42 15.87 113 

Available 

phosphorus 

(mg·kg-1) 

Calibration set 204 0.84 89.54 52.13 9.84 108 

Validation set 102 0.79 91.21 53.25 9.68 106 

All data 306 0.81 90.45 52.43 9.79 106 

Organic carbon 

(g·kg-1) 

Calibration set 204 2.35 20.01 13.87 1.25 115 

Validation set 102 1.58 24.69 13.77 1.04 112 

All data 306 1.86 25.44 13.72 1.12 114 

Min. is minimum, Max. is maximum, Std dev. is standard deviation, CV is coefficient variation 
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Figure 2. Weak absorption peaks in NIR spectra of soil samples 
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Performance of PLS and LS-SVM models 

Pre-processing methods are quite crucial for the accuracy of models. For PLS, the most 

optimum calibration was obtained by applying the pre-processing method with MSC 

combined with SG pretreatment (RMSEC=6.15 and Rc=0.89). The validation results of 

MSC+SG pretreatment was also the best of all (RMSEP=6.58 and Rp=0.90). 

For the spectra analyzed by LS-SVM, the most optimum calibration was achieved by 

using the pre-processing method also with MSC combined with SG pretreatment for 

prediction of total nitrogen, available phosphorus, and organic carbon content (RMSEC=4.84 

and Rc=0.91), which maintained the best validation results (RMSEP=4.75 and Rp=0.93). The 

optimum calibrated PLS and LS-SVM models were employed to conduct predictions for total 

nitrogen, available phosphorus, and organic carbon content that the results confirmed the 

desirable accuracy of these selected models in bold in Table 2. 

 

Table 2. Analysis of PLSR and LS-SVM models with selected pre-processing methods 

including SG, ANV+SG, MSC+SG and 1stD+SD 

Model types Data pre-processing 
Calibration set Validation set 

Rc RMSEC Rp RMSEP 

PLSR 

None 0.78 8.55 0.76 8.01 

SG 0.84 7.21 0.86 7.45 

SNV+SG 0.86 7.02 0.84 6.89 

MSC+SG 0.89 6.15 0.90 6.58 

1stD+SG 0.88 6.54 0.89 6.67 

LS-SVM 

None 0.86 6.21 0.87 6.34 

SG 0.88 5.98 0.86 5.74 

SNV+SG 0.90 5.25 0.91 5.12 

MSC+SG 0.91 4.84 0.93 4.75 

1stD+SG 0.86 4.97 0.87 4.87 

The results emphasized in bold are selected models 

 

 

Discussion 

NIR spectra of solid samples is usually prone to scatter noise due to the uneven 

distribution of particle size of samples, for example soil samples (Casale and Simonetti, 

2014; Acquah et al., 2015). To take full advantage of the spectra data re sample corded 

by NIR and to diminish the noise to the most extent, the data pre-processing methods are 

usually crucial to the establishment of the calibration model. The results of prediction are 

related to some uncertainties which mainly comprise environment conditions, 

measurement error, model selection and system settings. A simultaneous applications of 

data pre-processing methods and PLS models were applied to validate which model could 
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be more accurate in the predictions of soil nutrients including total nitrogen, available 

phosphorus, and organic carbon content. A large number of computer runs were required 

in order to establish different models derived from analysis of NIR spectrum data 

corresponding to different pre-processing methods. It is crucial to enhance the predictive 

ability of the analysis of the NIR spectroscopy data, particularly for batch samples of 

more sophisticate systems (Suykens and Vandewalle, 1999). 

In addition, it is obvious that the optimal smoothing mode should be chosen in order 

to implement the pretreatment optimization for the following establishment of the best 

prediction models. The performance of PLS and LS-SVM was different to some extent 

when SG smoothing and the pre-processing method (MSC, 1stD or SNV) was applied 

separately or combined, respectively. Spectra could be normalized by SNV when there 

were variations of the effective path length among samples. Moreover, this kind of path 

length could emerge especially when investigating powdered samples. In this study, the 

particle size, structure and color were varying among the soil samples. 

SG filter is widely used in data flow smoothing and de-noising. It is known as a 

smoothing method based upon the local polynomial least squares fitting in time domain 

(Tobias, 2017). The most important merit of this method is that it can keep the shape and 

width of the signal unchanged while filtering out the noise. When smoothing filter is used 

to filter the signal, the low-frequency components of the signal are fitted and the high-

frequency components are smoothed out. If the noise is at high frequency, then the result 

of filtering is to remove the noise. Otherwise, if the noise is at low frequency, then the 

result of filtering is to leave the noise (Geladi et al., 1985; Norgaard et al., 2000). MSC is 

a multivariate scattering correction technique, which can effectively eliminate the 

baseline shift and offset caused by scattering between samples and improve the signal-to-

noise ratio of the original spectra. This pre-processing method can be regarded as a 

suitable way to smooth the spectroscopy data of samples with different structure and size. 

It could be concluded from Table 2 that the data pre-processing method (MSC+SG) 

displayed the highest R values in PLS and LS-SVM models, which were 0.89 and 0.91, 

respectively. This step of pre-processing methods could eliminate the spectrum 

differences in the same series of samples caused by the inhomogeneity of particle size. 

However, model effect could be different when the pre-processing methods were applied 

separately or combined. The Rc values of PLS and LS-SVM models used SG pretreatment 

method separately were both lower than SG combined with SNV, MSC or 1stD. 

Therefore, the appropriate combination should be screened for the pre-processing 

optimization. 

Comparing the performances of PLS and LS-SVM, LS-SVM displayed better 

prediction ability. For PLS and LS-SVM models, all variables from the soil sample 

spectrum were applied to the calibration of the models. The values of RSMEC and 

RMSEP of LS-SVM (4.84 and 4.75, respectively) were better compared to PLS (6.15 and 

6.58, respectively). LS-SVM uses the least squares linear system as the loss function to 

replace it, so the inequality constraint is replaced by the equality constraint method, and 
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the LS-SVM evolves into the solution of linear equations, which improves the speed of 

solution and the convergence precision of solution. Therefore, compared with PLS model, 

LS-SVM demonstrated more desirable ability of predictions on the content of soil 

nutrients. 

Conclusions 

Based on NIR spectroscopy and chemometrics, two quantitative prediction models of 

soil nutrients including total nitrogen, available phosphorus, and organic carbon were 

established, which were PLS and LS-SVM models. As the existing prediction models, 

these models were widely applied in other studies, which were improved and adopted in 

this study for the prediction of typical soil nutrient in Wuling mountain, Hunan Province, 

including total nitrogen, available phosphorus, and organic carbon. The results illustrated 

that these two models both had good predictive ability. The pre-processing methods could 

enhance the ability of prediction models. MSC+SG method displayed the highest R 

values in PLS and LS-SVM models, which were 0.89 and 0.91, respectively. However, 

compared with PLS model, LS-SVM displayed more desirable performance on the 

predictions. The values of RSMEC and RMSEP of LS-SVM (4.84 and 4.75, respectively) 

were much better compared to PLS (6.15 and 6.58, respectively). The proposed methods 

in this study demonstrated obvious superiority over traditional laboratory test. The results 

demonstrated that NIR spectroscopy combined with chemometric technique is a rapid, 

low cost and reliable method for the analysis of soil content in the soil monitoring and 

improvement along the area of Wuling mountain. Further studies will be performed to 

validate the model in another place located in Hunan Province. In addition, more 

predictive models will be developed for practical applications in future. 
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