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Abstract. Maize, the third most important cereal crop around the globe, is hampered by devastating abiotic 

factors including salt stress. Calcium is known to increase plant tolerance to biotic and abiotic stresses by 

influencing physiological processes. The current study was carried out to investigate the genetic variation 

of maize hybrids against salt stress in combination with exogenous application of calcium (Ca2+) in a 

hydroponic culture. Three levels of salinity, each with NaCl (0 mM, 75 mM, and 150 mM) and Ca2+ (0 mM, 

2.5 mM, 5 mM) were applied to maize hybrids in three replications and data were recorded for key 

morpho-physiological traits. The results showed that all concentrations of NaCl significantly affect the 

maize hybrids with Sarhad White Azad Jammu Kashmir (SWAJ 6,7) and Syngenta 8441 being the least 

affected by both 75 mM and 150 mM NaCl concentrations. The exogenous application of 2.5 mM Ca²+ 

with 75 mM salt concentration showed significant effects on all morpho-physiological traits of maize 

hybrids. Better growth performance, maintenance of nutrient contents, lower accumulation of toxic sodium 

ions and lower Na+/ K+ in SWAJ6,7 and Syngenta 8441 indicate that these maize hybrids are more tolerant 

to salinity stress than the others under study.  
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Introduction 

Soil salinity is one of the key environmental constraints that limit the production of 

crop throughout the world (Jiang et al., 2018). In arid and semiarid regions, the soil 

salinity more severely affects crop production due to global climate changes and as 

consequences of irrigation practices (Farooq et al., 2015). In Pakistan around 6.8 million 

hectares of land is affected by salinity. Therefore, major agricultural area remains 

uncultivated (Chaudhary et al., 2017). Saline soils have high pH and electrical 

conductivity (EC > 4.0 dS/m) and are usually rich in sodium, chloride and sulfate ions, 

with high absorption rate of sodium (Flowers and Flowers, 2005). In the rhizosphere, 

osmotic pressure due to high saline condition reduces mineral and water uptake by the 

plant, which ultimately affect primary and secondary metabolism of the plant (Hendawy 

and Khalid, 2005). The cumulative response of meristematic and expanding cells to salt 

stress is the inhibition of shoot growth which is observed primarily under salinity stress 

(Shoresh et al., 2011). Salt stress causes various morphological and metabolic 

modifications in plants by creating osmotic stress and ionic imbalance thus disrupts the 

vital cellular functions (Taylor et al., 2004; Yildirim et al., 2006). Osmotic stress leads to 

the reduced water absorption by roots and increase water loss from leaves. This 
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mechanism is called hyperosmotic stress and it leads to various physiological 

modifications in plants such as nutrient imbalance, decreased photosynthetic activity, 

decreased stomatal apertures, membranes interruptions, modifications in antioxidant 

enzymes and failure to detoxify reactive oxygen species (ROS) (Soliman and El-Shaieny, 

2014). The formation of ROS due to salt stress interrupts vital cellular functions by 

causing damage to various cell components such as DNA, protein and lipids (Gupta and 

Huang, 2014). Plant tissues exposed to saline soil accumulate more Na+ and Cl- which is 

one of the most detrimental effect as it causes severe ionic imbalance in plants by 

decreasing uptake of important mineral ions which are essential for the growth and 

development of plant (James et al., 2011). Reduced water permeability and aquaporin 

abundance of membrane under salinity stress is restored by calcium treatment 

(Martínez-Ballesta et al., 2008). 

Calcium, an essential plant nutrient is responsible for the maintenance of structure and 

functions of plant membranes. It also increases the stability of cell wall structures, 

selectivity and transport of ions and improves the metabolic activities in plants. Calcium 

as second messenger plays a crucial role in signal transduction in response to 

developmental and environmental signals (Guo et al., 2019). Almost half of the cellular 

Ca2+ is bound mainly to carboxyl groups of pectins in the cell wall (Cramer, 2002). 

Previous studies indicated that salt induced inhibition of growth is improved by high 

content of Ca2+ bound to pectin on cell wall (Madea et al., 2005). Increased Na+ ions due 

salinity stress reduces calcium availability and its transport to growing regions of the plant 

(Shoresh et al., 2011). The reduction of Ca2+ concentration in salinized plants severely 

effects the physiological function. The addition of supplemental Ca2+ provide protection 

by stabilizing on the cell-wall components (Tuna et al., 2007). 

Maize (Zea mays L.), an important cereal crop is grown under wide range of soil and 

climatic conditions. It is an important C4 plant belongs to the grass family Poaceae 

(Farooq et al., 2015). About 21% of the total maize grain produced is consumed as food 

throughout the world (Chaudhary et al., 2017). The larger producer of maize is the United 

States with annual yield of about 4096190 thousand million tons. In Pakistan average 

yield of maize is 4268 kg/ha (Economic Survey of Pakistan, 2012-13). Various biotic and 

abiotic stresses extremely affect the yield potential of maize crop. Among abiotic stresses, 

salinity reduces the maize yields by causing numerous biochemical and physiological 

changes in plants (Zafar-ul-Hye et al., 2014). Maize is found to be moderately sensitive 

to salt stress. However, extensive genetic variation exists intra-specifically in maize for 

salt resistance (Mansour et al., 2005). The current study was aimed to explore the genetic 

variation of five different maize hybrids against salt stress in combination with exogenous 

application of Ca2+. 

Materials and Methods 

In order to investigate the influence of exogenously applied CaSO4 as calcium source 

on five maize hybrids under salt stress, an experiment was conducted in 2018 under 

hydroponic conditions in the greenhouse of COMSATS University Islamabad, 

Abbottabad Campus, Pakistan. Maize hybrids used in current study were: 

COMSATS Random Mating 8 (CTRM 8), Pirsabak Experimental Variety 2 (PSEV 2), 

Sarhad White Azad Jammu Kashmir 6, 7 (SWAJ 6, 7) and Syngenta 8441. 
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Plant growth and experimental treatments 

The seeds of five maize hybrids (CTRM 8, PSEV 2, SWAJ 6-7, Syngenta 8441 and 

XPW3) were sterilized with 1% HOCl for 10 minutes and rinsed with distilled water, the 

process being repeated 3 times. The seeds were germinated on moist thin sheets of foam at 

25ºC in an incubator. After germination, uniform sized seedlings were transferred in 

constantly aerated pots containing 1/3rd strength Hoagland’s solution. Plants were adapted to 

full strength nutrient solution in 25% increments every second day in similar way as described 

by Richter et al. (2015). The experiment was carried out in a completely randomized design 

(CRD). Plants were subjected to different concentrations of NaCl along with application of 

Ca2+ as foliar at four leaf stage. Seven different treatment combinations with three replicates 

per treatment were used. Treatment combinations were as follow: 

T1: Control (Hoagland solution alone); T2: Salt Stress (75 mM NaCl); T3: Salt stress 

and foliar (75 mM NaCl + 2.5 mM Ca2+); T4: Salt stress and foliar (75 mM NaCl + 5 mM 

Ca2+); T5: Salt Stress (150 mM NaCl); T6: Salt stress and foliar (150 mM NaCl + 2.5 mM 

Ca2+); T7: Salt stress and foliar (150 mM NaCl + 5 mM Ca2+). 

Growth parameters 

Growth parameters were scored at seventh day of treatments application by measuring 

leaf number, leaf area, shoot length and maximum root length. Fresh weights of plants 

were taken immediately after harvesting. For dry weight, plant organs were placed in an 

incubator at 75 ̊C for 72 hrs (Sun et al., 2018). Leaf area was calculated according to 

Equation 1: 

 

 𝐴 = 𝐿𝐿 ∗ 𝑊 ∗ 𝐾 (Eq.1) 

 

where, 

LL represents leaf length, 

W is the maximum width and 

K is a shape factor with value 0.75. 

Chlorophyll content 

Chlorophyll extraction was done by grinding 0.1 g of fresh leaves in 15 ml of acetone 

(80%). This mixture was then subjected to centrifugation at 5000 rpm for 10 minutes at 

4ºC. Supernatant from each sample was collected until the residue was turned into 

colorless mixture. The chlorophyll content was measured using spectrophotometer at 

wavelength of 645 nm and 663 nm (Nayyar et al., 2005). 

Relative water content 

Relative Water content (RWC) was determined according to Equation 2 as described 

by Loutfy et al. (2012). 

 

 𝑅𝑊𝐶(%) = [(𝐹𝑊 − 𝐷𝑊)/(𝑇𝑊 − 𝐷𝑊)] ∗ 100 (Eq.2) 

 

where, 

FW represents fresh weight, 

TW is Turgid weight and 

DW is Dry weight. 
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Electrolyte leakage 

For determination of electrolyte leakage (EL), 10 leaf discs of about 10 mm diameter 

from expanded leaves of all maize hybrids were taken and rinsed with distilled water to 

get rid of electrolytes adhered to the surface. These leaf discs were incubated at 10°C 

after placing them in glass tubes filled with 10 ml of distilled water for 24 hr. The initial 

electrical conductivity (EC1) of the solution was measured using conductometer. To 

release all electrolytes, these tubes were heated at 95°C in water bath for 20 min followed 

by cooling at room temperature. After that final electrical conductivity (EC2) was 

determined. 

EL was calculated using Equation 3 (Yildirim et al., 2009). 

 

 𝐸𝐿 = (
𝐸𝐶1

𝐸𝐶2
) ∗ 100 (Eq.3) 

Plant mineral ion contents 

For determination of mineral ions, 100 mg of dried plant samples (roots and leaves) 

were heated for about 5 hrs in furnace at 520°C for ash formation. The ash of each plant 

sample was then solubilized in nitric-perchloric acid mixture (5:1) and volume was raised 

to 15 ml using distilled water. Afterwards filtered suspensions were used to determine the 

concentrations of Na+, K+, Ca+2 and Mg+2 using atomic absorption spectrometry. For 

standard curves, different concentrations of Ca+2, K+, Na+ and Mg+2 were prepared by 

diluting stock solution of CaSO4, KCl, NaCl and MgSO4. The standard curve was used 

to determine the content of each element in the plant organs (roots and leaf) and expressed 

in mg g-1 dw (Qadir, 2016). 

Proline contents 

Leaf proline content was extracted and analyzed by the method of Bates et al. (1973). 

0.1 g of fresh leaf of all maize hybrids were ground using liquid nitrogen in a mortar. 1 ml 

of sulfosalicylic acid (3% w/v) was added to the resulted homogenate powder of leaves 

and then filtered. The filtrate was reacted with 1 ml of glacial acetic acid (GAA) and 1 ml 

of ninhydrin reagent (1.25 mg Ninhydrin in 30 ml of GAA and 20 ml 6 M H3PO4) and 

placed in an incubater for 1 hr at 95°C. To terminate the reaction, reaction mixture 

containing tubes were kept in ice bath for 5 min followed by vigorous mixing with 2 ml 

toluene. After warming at 25°C, the chromophore was measured at 520 nm. L-proline 

was used as a standard. 

Statistical analysis 

For statistical analysis, results of all experiments were expressed as mean ±standard 

deviation (SD) of three replicates. Data were subjected to one-way analysis of variance 

(ANOVA) and LSD multiple comparison test (P < 0.05) using the SPSS statistical 

package. Significant differences are indicated by alphabets in figures and tables. 

Results 

Growth parameters of maize under salt stress and Ca2+ treatments 

The growth parameters of maize seedlings were evaluated by measuring leaf area, root 

length and shoot length of plants under salt stress. Effect of salt stress and calcium on 
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growth parameters of five maize hybrids (CTRM8, PSEV2, SWAJ 6, 7, Syngenta 8441 

and XPW3) are listed in Table 1. Under salt stress all five Maize hybrids react differently. 

Salt addition showed significant effect on growth parameters like leaf area, root length 

and shoot length of plants. The maximum decrease in these parameters was observed in 

CTRM 8 and XPW 3 whereas maximum shoot length, maximum root length and leaf area 

was exhibited by SWAJ 6, 7 and Syngenta 8441 which showed improved growth traits. 

However, effects of salinity were significantly alleviated in all five maize hybrids by 

foliar application of 2.5 mM Ca2+. Although application of 5 mM Ca2+ also improved 

plant growth but the effect was not significant as compare to 2.5 mM Ca2+ (Table 1). 
 

Table 1. Shoot length (cm), Root length (cm), and Leaf area (m2) concentration in leaves of 

all five Maize hybrids in response to salinity and Ca2+ concentrations 

Maize hybrid Treatment Shoot length Root length Leaf area 

CTRM8 

T1 31.00 CD 21.33  G 21.85 IJ 

T2 22.68 I 17.00 IH 13.79 L 

T3 32.50 C 19.83 H 27.55 D 

T4 30.33 D 15.67 I 25.72 F 

T5 15.68 KL 13.33 J 13.34 L 

T6 30.17 D 17.17 IH 24.04 FG 

T7 24.00 G 11.83 17.23 K 

PSEV2 

T1 33.50 BC 18.17 H 24.38 FG 

T2 22.67H 16.17 I 18.55 IK 

T3 33.33 BC 21.50 G 26.58 E 

T4 30.00 E 18.33 H 25.09 F 

T5 18.50 K 12.67 J 18.77 IK 

T6 32.00 D 16.17 I 25.96 EF 

T7 27.00 EF 8.17  M 18.19 IK 

SWAJ 6, 7 

T1 34.67 C 33.50 A 26.46 E 

T2 28.17 F 16.83 I 23.04  G 

T3 33.17 BC 32.50 B 31.64 B 

T4 31.00  CD 25.67 E 26.83 E 

T5 20.50 J 17.67 H 18.86 IK 

T6 33.17 BC 27.00 D 25.24 F 

T7 31.67 D 16.17 I 25.08 F 

Syngenta 8441 

T1 38.17 A 33.83 A 28.88 CD 

T2 27.00EF 25.57 E 26.06 E 

T3 37.00 AB 32.67 B 33.26 A 

T4 33.50 BC 23.33 F 30.14 BC 

T5 23.83 GH 26.67 DE 23.63 G 

T6 33.67 CD 21.00 G 29.67 C 

T7 36.17 B 28.83 C 27.75 D 

XPW3 

T1 27.00 EF 26.50 DE 21.85 H 

T2 24.83 H 14.50 17.08 K 

T3 29.33 DE 18.67 H 22.74 GH 

T4 25.33 FG 14.17 K 22.35 GH 

T5 15.83 KL 13.00 K 14.93 KL 

T6 26.67 G 14.33 K 20.13 IJ 

T7 24.17 H 12.67 L 19.55 I 

Mean values followed by different letters within each column differ significantly at P ≤ 0.05. T1: Control 

(non- saline); T2: 75 mM NaCl; T3: 75 mM NaCl + 2.5 mM Ca2+; T4: 75 mM NaCl + 5 mM Ca2+; T5: 

150 mM NaCl; T6: 150 mM NaCl + 2.5 mM Ca2+; T7: 150 mM NaCl + 2.5 mM Ca2+ 
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Leaf chlorophyll content in maize under salt stress and Ca2+ treatments 

Salt stress showed significant effect on total leaf chlorophyll contents of maize 

hybrids. Increase in salt stress resulted decrease in chlorophyll contents of maize leaves. 

It is found from the results that the high levels of salinity (150 mM NaCl) induced 

reduction in the total chlorophyll contents of leaves significantly in comparison to leaves 

of control plants. However, Ca2+ application on plants under salt stress increased the leaf 

chlorophyll contents (Table 2). Importantly, 2.5 mM Ca2+ treatments showed 

significantly higher total chlorophyll contents compared to that of 5 mM Ca2+ treatments. 

 
Table 2. Total leaf chlorophyll contents (mg g-1 FW), RWC (%), and Electrolyte leakage (%) 

concentration in leaves of all five Maize hybrids in response to salinity and Ca2+ 

concentrations 

Maize hybrid Treatment 
Total chlorophyll 

(mg g-1 FW) 

Relative water 

(%) 

Electrolyte leakage 

( %) 

CTRM8 

T1 15.19 C 77.09 I 22.61 R 

T2 9.42 F 72.32 J 61.67 D 

T3 13.58 D 86.60 D 33.93 N 

T4 11.80 E 80.56 H 29.61 P 

T5 6.79 G 60.14 68.63 A 

T6 10.88 EF 78.73 I 65.26 B 

T7 10.35 EF 59.60 N 63.15 C 

PSEV2 

T1 17.73 B 84.34 E 25.33 Q 

T2 12.01 DE 70.14 K 58.54 E 

T3 15.79 C 96.34 A 36.33 M 

T4 13.55 D 79.25 H 32.33 N 

T5 8.51 F 61.26 M 63.33 C 

T6 13.43 D 77.16 I 61.33 D 

T7 14.06 CD 65.67 L 59.33 E 

SWAJ 6, 7 

T1 19.38 A 90.85 C 20.00 S 

T2 13.16 D 73.05 J 46.39 K 

T3 16.26 BC 93.31 B 31.00 O 

T4 14.45 CD 85.85 E 27.53 Q 

T5 10.56 EF 61.81 M 56.27 F 

T6 15.10 C 81.84 G 49.38 I 

T7 13.59 D 72.01 J 46.05 K 

Syngenta 8441 

T1 19.60 A 93.68 B 19.32 S 

T2 13.68 D 80.27 H 45.21 L 

T3 16.63 BC 96.76 A 30.32 P 

T4 14.99 CD 86.05 D 26.42 Q 

T5 11.75 E 68.34 L 55.15 G 

T6 14.40 CD 81.66 G 48.00 J 

T7 15.40 C 67.06 L 45.00 L 

XPW3 

T1 17.46 B 85.25 D 23.08 R 

T2 10.51 EF 65.67 L 59.68 E 

T3 14.97 C 89.66 C 33.74 N 

T4 14.42 CD 85.29 D 30.26 P 

T5 6.53 G 49.77 P 69.83 A 

T6 9.93 F 83.82 F 51.43 H 

T7 8.38 F 54.29 O 59.80 E 

Mean values followed by different letters within each column differ significantly at P ≤ 0.05. T1: Control 

(non-saline); T2: 75 mM NaCl; T3: 75 mM NaCl + 2.5 mM Ca2+; T4: 75 mM NaCl + 5mM Ca2+; T5: 

150 mM NaCl; T6: 150 mM NaCl + 2.5 mM Ca2+; T7: 150 mM NaCl + 2.5 mM Ca2+ 
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RWC of maize under salt stress and Ca2+ treatments 

Salt stress significantly reduced RWC in all maize hybrids with more prominent effect 

in CTRM8 and XPW3 in comparison with the control conditions. Salt-induced water 

imbalance resulted in decrease RWC. However, foliar application of 2.5 mM and 5 mM 

Ca2+ on salt-stressed maize plants increased RWC significantly in comparison to plants 

under salt stress only (Table 2). 

Electrolyte leakage under salt stress and Ca2+ treatments 

The increasing salt concentrations enhanced EL value of all maize hybrids (Table 2). 

The highest EL was observed in CTRM 8 and XPW3 in comparison to SWAJ 6, 7 and 

Syngenta 8441 under all stress conditions. However, supplemented Ca2+ reduced MP of 

salt stressed plants compared to plants without Ca2+ under salt stress. The application of 

Ca2+ significantly improved MP by decreasing the electrolyte leakage under salt stress. 

Na, K+, Ca and Mg contents of leaves and roots under salt stress and Ca2+ treatments 

Salinity has very clear effects on ionic composition of maize. Maize genotype 

SWAJ 6, 7 and Syngenta 8441 showed better chemical attributes at all levels of salt stress. 

In all five maize hybrids, Na+ accumulation in leaves and roots was proportional to the 

NaCl concentration in the medium applied exogenously. Significant increase of Na+ 

levels was found in roots and leaves of all maize hybrids under treatments. This increase 

was more obvious in the leaves of XPW 3 than that in SWAJ 6, 7 and Syngenta 8441 

hybrids (Fig. 1a). The highest concentration of Na+ were observed in the roots of 

SWAJ 6, 7 and Syngenta 8441 at 150 mM NaCl treatment in combination with 2.5 and 

5 mM foliar Ca2+ applications (Fig. 1b). Sodium accumulation in roots and leaves of 

maize hybrids under combined treatment of NaCl + Ca2+ was found less than sodium in 

plants under treatment of NaCl alone. Ca2+ application thus alleviates the 

hyperaccumulation of Na+ ions in plants under salt stress (Fig. 1a,b). 

 

Figure 1. The Na concentration of leaf (a) and root (b) Mg concentration of leaf (c) and root 

(d) of five maize hybrids (CTRM8, PSEV2, SWAJ 6, 7, Syngenta 8441, XPE3) in response to 

salinity and Ca2+ supplement. Values are means ± SE of three replicates 
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Mg2+ content of leaf showed no significant effect under salt stress and foliar 

application of Ca2+ under salinity did not change the Mg2+ contents in leaf (Fig. 1c). 

However, salinity showed negative effect on root Mg2+ contents. Foliar Ca2+ application 

enhanced concentration of Mg in roots of all maize hybrids under salt stress (Fig. 1d). 

Salt stress had induced noticeable variations in Ca2+ and K+ contents in leaves and 

roots of all maize hybrids. In comparison to that of control plants, all five maize hybrids 

showed decline in K+ and Ca2+ contents of roots and leaves under salt stress. This decrease 

in K+ and Ca2+ was more pronounced in CTRM8 and XPW3 as compared to SWAJ 6, 7 

and Syngenta 8441 maize hybrids. Supplemental Ca2+ enhanced the K+ and Ca2+ 

concentrations of leaves and roots of maize plants under salt stress. At all salinity levels, 

maintenance of high level of K+ was better in SWAJ 6, 7 and Syngenta 8441 in 

comparison to CTRM8 and XPW3 (Fig. 2). 

 

Figure 2. The Ca concentration of leaf (a) and root (b) K concentration of leaf (c) and root (d) 

of five maize hybrids (CTRM8, PSEV2, SWAJ 6, 7, Syngenta 8441, XPE3) in response to 

salinity and Ca2+ supplement. Values are means ± SE of three replicates 

 

 

For all five maize hybrids, Na+/K+ ratio increased dramatically under salt stress with 

more notable effect in leaves of CTRM8 and XPW3 (Fig. 3). Supplemental Ca2+ resulted 

significant decline in Na+/K+ ratio of maize leaves under salt stress. 

Proline contents of maize leaves under salt stress and Ca2+ treatments 

Analysis of proline contents of maize leaves indicated that application of salt resulted 

in increased proline contents in all maize hybrids with more pronounced effect in CTRM8 

and XPW3 as compare to SWAJ 6, 7 and Syngenta 8441. Under salt stress, proline 

contents in maize enhanced significantly (Fig. 4). However, proline concentration was 

markedly decreased in plants with exogenous application of 2.5 mM and 5mM 

concentrations of Ca2+ under salt stress. The less proline contents were found in plants 

treated with 2.5 mM Ca2+. 
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Figure 3. The Na/K Ratio in roots (a) and leaf (b) of leaf of five maize hybrids (CTRM8, 

PSEV2, SWAJ 6, 7, Syngenta 8441, XPE3) in response to salinity and Ca2+ supplement. Values 

are means ± SE of three replicates 

 

 

Figure 4. Proline content of of five maize hybrids (CTRM8, PSEV2, SWAJ 6, 7, Syngenta 8441, 

XPE3) in response to salinity and Ca2+ supplement. Values are means ± SE of three replicates 

 

 

Discussion 

The current study was carried out to investigate the genetic variation of five maize 

hybrids against salt stress in combination with exogenous application of calcium (Ca2+). 

The decrease in plant growth parameters such as shoot length, root length, leaf area, plant 

weight (fresh and dry) due to salt stress, confirming many prior findings (Mulholland, 

2002; Yurtseven et al., 2003; Agong et al., 2004; Ahmad, 2012). Excessive Na+ 

accumulation in presence of NaCl resulted in nutritional and metabolic imbalances due 
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to ion toxicity which led to reduction in growth parameters of maize hybrids. It was 

reported that higher accumulation of Na+ ions is the main cause of decreased plant growth 

and metabolism (Zhu, 2002). The genotypes with less concentration of Na+ produced 

more biomass as confirmed by Munns and James (2003). 

Ca2+ ion shows ameliorating effect on growth parameters of plants under salt stress 

may be by competing with Na+ ion for binding with membranes. Ca2+ application 

minimized the harmful effects of NaCl and enhanced plant growth of all five maize 

hybrids. Previous studies also reported that exogenous Ca2+ application increased plant 

growth and tolerance to salt stress in Cassia angustifolia (Senna) (Arshi et al., 2005), 

Eleusine coracana (finger millet), Thinopyrum ponticum (wheatgrass) and Lolium 

perenne (ryegrass) (Sima et al., 2009), Cakile maritime (Sea Rocket) (Amor et al., 2010), 

Zea mays (Maize) (Shoresh et al., 2011), Cunninghamia Lanceolata (Chinese fir) (Liu et 

al., 2014), Lycopersicon esculentum (Tomato) (Parvin et al., 2015) and Calligonum 

mongolicum (Xu et al., 2017). Ameliorative effect of calcium by enhancing the vegetative 

growth and total dry weight of plants under salt stress has also been confirmed by 

Manivannan et al. (2007). Improved growth performance of SWAJ 6, 7 and Syngenta 

8441 under salt stress indicate that these maize hybrids are more tolerant to salinity stress 

than CTRM8, PSEV2 and XPW3. 

Salt stress showed significant effect on total leaf chlorophyll contents of maize 

hybrids. Increase in salt stress resulted decrease in chlorophyll contents of maize leaves. 

It is found from the results that the high levels of salinity (150 mM NaCl) induced 

reduction in the total chlorophyll contents of leaves significantly in comparison to leaves 

of control plants. Netondo et al. (2004), Amini and Ehsanpour (2006) and Naher (2014) 

also reported similar findings. Moreover, chlorophyll contents were less affected in 

SWAJ 6, 7 and Syngenta 8441 than CTRM8 and XPW3 indicated that they were able to 

maintain photosynthetic capacity under salt stress. However, Ca2+ application on plants 

under salt stress increased the leaf chlorophyll contents (Table 2). A range of plant species 

responses from positive to negative effects to supplemental Ca2+ have been described in 

previous studies (Cramer, 2002; Cabot et al., 2009). Nevertheless, total leaf chlorophyll 

significantly increased by supplemental Ca2+ under salt stress (Table 2). Similar responses 

were found in other plants such as Cucumis sativus L. (Cucumber), Fragaria ananassa 

(strawberry) and Vigna radiate (Mung bean) (Kaya and Higgs, 2002; Kaya et al., 2002; 

Manivannan et al., 2007). Importantly, 2.5 mM Ca2+ treatments showed significantly 

higher total chlorophyll contents compared to that of 5 mM Ca2+ treatments. 

Reduction in RWC in salt stressed plant is a common phenomenon. In present study 

all five maize hybrids showed decreased RWC under salt stress with less significant effect 

under mild stress of 75 mM NaCl in Syngenta 8441 and SWAJ 6, 7. Similar water 

shortage induced by salt was observed in Oryza sativa and Zea mays affected with salt 

(Cicek and Cakirlar, 2002; Tuna et al., 2008). Plants supplemented with Ca2+ showed 

improved RWC may be due to water retention under salt stress. Similar results were 

reported by Tahjib-Ul-Arif et al., (2018). 

Membrane permeability (MP) can be determined by measuring electrolyte leakage 

(EL). Plasma membranes are primarily affected by ion-specific salt injury (Mansour et 

al., 2005). Hence, for the identification of salt tolerant plants, determination of electrolyte 

leakage from plasma membranes is an important criterion (Ashraf and Ali, 2008). In 

present study, all maize hybrids showed increase in EL under salt stress which is an 

indication of membrane dysfunction. The increased permeability of cellular membranes 

for electrolytes and ions is the clear indication of membrane dysfunction caused by salt 
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stress and it can be measured by the electrolytes and efflux (Qadir, 2016). The highest EL 

was observed in CTRM 8 and XPW3 in comparison to SWAJ 6, 7 and Syngenta 8441. 

Demidchik et al. (2014) stated that efflux of K+ is mainly related to electrolyte leakage. 

However, supplemented Ca2+ reduced MP of salt stressed plants compared to plants 

without Ca2+ under salt stress. The application of Ca2+ significantly improved MP by 

decreasing the electrolyte leakage under salt stress. 

Salinity has very clear effects on ionic composition of maize. Significant increase of 

Na+ levels was found in roots and leaves of all maize hybrids under treatments. This 

increase was more obvious in the leaves of XPW 3 than that in SWAJ 6, 7 and Syngenta 

8441 hybrids (Fig. 1a). The highest concentration of Na+ were observed in the roots of 

SWAJ 6, 7 and Syngenta 8441 at 150 mM NaCl treatment (Fig. 1b). Similar response 

was also reported in other plants such as Malus species, Myrtus Communis L. (Myrtle), 

Citrus and Pistacia vera (Pistachio) (Liu et al., 2012; Acosta-Motos et al., 2015; 

Martínez-Alcántara et al., 2015; Rahneshan et al., 2018). 

Salt stress had induced noticeable variations in Ca2+ and K+ contents in leaves and 

roots of all maize hybrids. In comparison to that of control plants, all five maize hybrids 

showed decline in K+ and Ca2+ contents of roots and leaves under salt stress. This decrease 

in K+ and Ca2+ was more pronounced in CTRM8 and XPW3 as compared to SWAJ 6, 7 

and Syngenta 8441 maize hybrids. Supplemental Ca2+ enhanced the K+ and Ca2+ 

concentrations of leaves and roots of maize plants under salt stress, similar to findings in 

other plant species (Tuna et al., 2007; Nedjimi and Daoud, 2009; Cabot et al., 2009; Kwon 

et al., 2009). At all salinity levels, maintenance of high level of K+ was better in 

SWAJ 6, 7 and Syngenta 8441 in comparison to CTRM8 and XPW3 (Figure 2). 

Increase in salinity levels lead to increased uptake of Na+ which dramatically increased 

Na+/K+ ratio in roots and leaves of all maize hybrids. For all five maize hybrids, Na+/K+ 

ratio increased dramatically under salt stress with more notable effect in leaves of CTRM8 

and XPW3 (Fig. 3). Supplemental Ca2+ resulted significant decline in Na+/K+ ratio of 

maize leaves under salt stress. It is documented that in salt-stressed plants, Ca2+ sustains 

K+/ Na+ selectivity and K+ transport at the plasma membrane. Exogenous Ca2+ can reduce 

K+ loss and enhance its uptake in plants under salt stress by affecting different channels 

as demonstrated by several previous studies (Shabala and Newman, 2000; Maathuis and 

Sanders, 2001; Shabala et al., 2003, 2005, 2006). This indicates that Ca2+ amelioration of 

salt stress is a critical process in K+ transport regulation that may induce growth in plants. 

Better chemical attributes of SWAJ 6, 7 and Syngenta 8441 at all levels of salt stress 

could be the reason of their tolerance to salt stress. 

Proline is considered as a source of nitrogen and carbon for rapid recovery of plants 

under salt stress. It acts as free radical scavenger and not only adjust the osmotic pressure 

of plant but also found to involve in stabilization of membranes and some 

macromolecules in plant cells. Less accumulation of proline contents in salt stressed 

maize seedlings treated with calcium shows protective role of calcium in plants by 

reducing osmotic pressure caused by salt stress (Hoque et al., 2007). Therefore, plants 

accumulated less proline contents under salt stress with application of calcium. 

Accumulation of proline is the primary defense response in many plants under salt stress 

to adjust the osmotic potential as reported in various salt sensitive/ tolerant cultivars such 

as Zea mays (Maize), Vigna radiate (Mung bean), Sesamum indicum (sesame), 

Setaria italica L. (foxtail millet) and Pistacia vera (Pistachio) (Mansour et al., 2005; 

Misra and Gupta, 2005; Koca et al., 2007; Veeranagamallaiah et al., 2007; 

Chelli-Chaabouni et al., 2010). Some studies showed that under salt stress, tolerant 
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cultivars accumulate more proline than the salt sensitive cultivars (Misra and Gupta, 

2005; Rahneshan et al., 2018). However, proline accumulation is also controversial with 

reference to tolerance and osmotic adjustment in plants exposed to undesirable 

environmental conditions (Ghars et al., 2008) as indicated by some studies where more 

proline accumulated in salt sensitive cultivars than the salt tolerant cultivar (Claussen, 

2005). In current study proline accumulation was significantly higher in maize hybrids 

evaluated as salt sensitive (CTRM8 and XPW3) than in salt tolerant (SWAJ 6, 7 and 

Syngenta 8441). These results suggest that loss of cell homeostasis is responsible for 

excessive proline accumulation in salt sensitive hybrids. Similar results have been 

reported in previous studies where salt sensitive genotype of Sorghum bicolor L. 

(Sorghum kaya) (Wheat Arta) (Akbari et al., 2016) accumualted more proline under salt 

stress. These findings indicate that more proline accumulation is due to loss of cell 

homoeostasis. Moreover, these results suggest that salt tolerance is not fully reflected by 

proline accumulation itself in plants; however, proline accumulation could be an indicator 

of stress. 

Conclusion 

The overall results indicate that the growth parameters of all five maize hybrids were 

affected significantly by different salt stresses. However, better growth performance, 

maintenance of nutrient contents, less accumulation of toxic sodium ions and lower 

Na+/K+ in SWAJ 6, 7 and Syngenta 8441 indicate that these maize hybrids are more 

tolerant to salinity stress than all others. It is also concluded that the foliar application of 

Ca2+ against salt stresses improved the growth parametrs of hybrids. Therefore, it can be 

concluded that the salt stress can be mitigated by the exogenous application of Ca2+ in 

crop plants. Further, the experiment might be repeated in different locations with different 

maize hybrids for making concrete recommendations. 
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