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Abstract. Accurate forest aboveground biomass estimations have always been of crucial importance for 

sustainable forest management. However, a choice of the suitable statistical modelling method and 

predictor variables from remotely sensed data remains the keystone for providing accurate aboveground 

biomass estimates. The present study intended to compare the potential of four modelling techniques, 

including RandomForest, Support vector machine, multilinear regression, and K-nearest neighbour for 

estimating aboveground biomass using vegetation indices, spectral information, and both vegetation 

indices and spectral bands. The results have revealed that machine learning algorithms provide better 

results than the multilinear regression method. Indeed, the multilinear regression method produced the 

lowest R2 and the greatest RMSE. Besides, the RandomForest performed better by providing accurate 

results compared to other machine learning algorithms. However, comparing the three sets of predictors, 

the vegetation indices have yielded accurate results of aboveground biomass and the strongest modelling 

power. Our results have also revealed that the RF is the best choice for predicting aboveground biomass 

for the purpose of reducing over- or under-estimation problems. This study has demonstrated the 

potential of the machine learning algorithms in predicting aboveground biomass in the tropical forest, 

using freely remotely sensed data derived from sensors with medium spatial resolution. 

Keywords: aboveground biomass, Landsat 8 Operational Land Imager, Mayombe, machine learning 

Introduction 

Forest ecosystems store up to 80% and 40% of aboveground and underground 

carbon, respectively (Mohammadi et al., 2017) and can strongly contribute to mitigating 

effects of climate change (Moroni, 2013; Caputo, 2009; Brown et at., 1996; Zhang et 

al., 2014). Numerous studies have shown that biomass is an essential parameter for the 

carbon sequestration description. However, forest programs based on reducing carbon 

emissions require the accurate estimation of forest biomass. 

In general, the biomass comprises of aboveground biomass (AGB) and belowground 

biomass (BGB) (Lu, 2006). Therefore, due to the difficult works related to the 

acquisition and calculation of the BGB, several studies are focused principally on AGB. 

Forest biomass has already been measured using several allometric methods based on 

numerous tree measurements (Manyanda et al., 2019; Mohammadi et al., 2017; Vashum 

and Jayakumar, 2012). Therefore, forest biomass estimation relying on field inventory 
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is more expensive, arduous, and unrealizable in unreachable areas, thereby making it 

practicable only in relatively small and accessible areas. Currently, it is possible to 

optimize this inventory work and reduce the field measurement costs using techniques 

combining remote sensing technology and field inventories. Indeed, the remote sensing 

technology, with its capabilities of providing updated information on large areas, has 

been successfully used for spatial distribution and temporal variation of forest biomass. 

Several studies have reported that remote sensing variables are useful predictors of 

biomass because of a strong correlation between biomass and reflectance at different 

wavelengths (Phua and Saito, 2003; Lu et al., 2004; Zheng et al., 2004). Also, 

McRoberts et al. (2013) have stated that biomass models using remotely sensed data 

produce more accurate results than other traditional models. Previously, much research 

has been completed to estimate AGB in forest ecosystems (Zhang et al., 2014; Dixon et 

al., 1994; Saatchi et al., 2009; Pflugmacher et al., 2014; López-Serrano et al., 2016; Zhu 

and Liu, 2015; Glenn et al., 2016). In this research, different remote sensing data 

(spectral bands and variables derived from spectral bands) and various modelling 

techniques have been used. However, the remote sensing technology for modelling 

aboveground biomass implies several main issues. Some of them are related to the 

remotely sensed derived spectral information that is used as predictor variables (Wang 

et al., 2013; Lu et al., 2016; Frazier et al., 2014), while others are related to the suitable 

statistical modelling approach (Shao et al., 2016; Alrababah et al., 2011). According to 

Lu et al. (2006), two categories of techniques have been used for modelling forest 

biomass, including parametric and nonparametric methods. 

The parametric methods are related to statistical regression, such as linear regression 

(Lu et al., 2016). In fact, multilinear models are frequently applied to estimate 

aboveground biomass. However, the relationships between aboveground biomass and 

predictor variables derived from remotely sensed data might not be linear; 

consequently, it can lead to overestimation or underestimation problems for small or 

high aboveground biomass values (Zhao et al., 2016). Therefore, much research has 

been conducted to examine the use or the potential of nonparametric algorithms, 

including support vector regression, K-nearest neighbour, and random forest (Li et al., 

2014; Vauhkonen et al., 2010; Lu et al., 2016; Gleason and Im, 2012). However, Kumar 

and Mutanga (2017) have mentioned that among various AGB modelling methods 

based on different remotely sensed and field data, it is difficult to state or declare that 

there is one more suitable model than others without assessing their performance 

separately. In fact, in the field of aboveground biomass estimation using remote sensing 

technology, the result accuracy depends on different factors, including forest types, 

remote sensing sensors, and topographical features. Similarly, Feng et al. (2017) have 

reported that no single modelling method has been determined to be the best for 

predicting aboveground biomass. Also, Fassnacht et al. (2014) have demonstrated that 

in the frame of modelling forest biomass based on remote sensing technique, the 

modelling approach is as important as the data type in deriving accurate AGB estimates. 

However, among all previous studies that have tackled the main methods for 

modelling aboveground biomass, it is unclearly known how data types, forest types, and 

modelling methods affect aboveground biomass prediction results, especially in the 

Mayombe tropical forest of the Democratic Republic of Congo, where less research has 

been carried out for aboveground biomass estimation. 

In this research, the main objective was to compare different statistical modelling 

methods for generating estimates of AGB in the Mayombe forest. The machine learning 
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algorithms and multilinear regression method were then used to estimate the 

aboveground forest biomass based on remotely sensed data and field biomass 

measurement. After comparing the performance of the four different models, the 

suitable model was used to produce a forest biomass map of our study area. 

Materials and methods 

Study area 

The study area is located in the central zone of the Biosphere Reserve of Luki 

(Fig. 1), in the Southwestern part of the Democratic Republic of Congo. It is located 

between 5.5-5.6°S in latitude and 13.08-13.24°E in longitude. Its total land area is 

estimated at 8347 ha, entirely located in the Congolese Mayombe tropical forest. The 

region is dominated by tropical forest and humid tropical climate (Aw5, according to 

Köppen’s classification). This climate is characterized by two seasons notably a rainy 

season of seven months (mid-October to mid-May) and a dry season of five months 

(mid-May to mid-October). The annual average temperature and the annual average 

precipitation are 28.8 °C and 1032.72 mm, respectively. The vegetation is dominated by 

the primary forest. 

 

 

Figure 1. Study area location and forest sample plot. (a) The Democratic Republic of Congo, 

(b) the study area 

 

 

Data collection from the field and aboveground biomass estimation 

One hundred fourteen square plots with size 30 × 30 m (corresponding to a Landsat 

pixel) were installed in the forest from June to July of the year 2019. We recorded the 

plot centre geographic coordinates using GPS (global positioning system) receivers. For 

the purpose of reducing the GPS horizontal locational error (∼5 to 10 m), we considered 
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final plot positions based on the criterion that the forest structure and composition in a 

10-m buffer around the plot are the same as within the plot. The tree height (m) and tree 

diameter at breast height (cm) were measured on each tree inside of each sample plot. 

Also, the name of each tree with diameter at breast height (DBH) greater than 10 cm 

was reported. To compute the aboveground biomass of individual trees using diameter 

and tree height, allometric models were used. Several allometric models have been 

developed for the tropical forest. However, due to the literature review, no allometric 

model for estimating aboveground biomass is available locally for the Mayombe 

tropical forest of the Democratic Republic of Congo. Therefore, the allometric equation 

of Fayolle et al. (2013) was adapted to convert field data to AGB per tree. The predicted 

tree aboveground forest biomass within each plot was summed to represent plot 

biomass (expressed in Mg/900 m2). After that, the expansion factor was used to 

calculate the AGB per hectare for each plot. 

 

Remote sensing dataset and preprocessing 

Surface reflectance Landsat image of 2019 (the 18th of June), with 30 m resolution 

(path 183 and row 64), was acquired through the USGS Earth Explorer 

(earthexplorer.usgs.gov). The image was cloud-free and was corrected for atmospheric 

and topography conditions by the provider. Using the spectral bands (red, blue, and 

near-infrared bands), we calculated various vegetation indices (Table 1), which were 

used to estimate the aboveground biomass of the area under study. In this paper, based 

on the correlation between different spectral variables and biomass, numerous machine 

learning algorithms and a multilinear regression model were performed to predict 

aboveground biomass. Based on the geographic coordinates of the centre of each 

sample plot, the spectral variable values, were calculated within the area of each plot 

using R software; then, we established a database of predictors (vegetation indices and 

spectral bands) versus biomass values. 

 
Table 1. Information on remote sensing variables 

Image spectral information  
Band 2 (Blue), Band 3 (Green), Band 4 (Red), Band 5 (NIR), 

Band 6 (SWIR1), Band 7 (SWIR2) 

Vegetation indices Equation 

Soil adjusted vegetation index (SAVI) ((NIR – R) / (NIR + R + L)) × (1 + L) (Eq.1) 

Normalized difference vegetation 

index (NDVI) 
NIR – R / NIR + R (Eq.2) 

Ratio vegetation index (RDVI) (NDVI × DVI)0.5 (Eq.3) 

Optimized soil-adjusted vegetation 

index (OSAVI) 

(NIR – R / NIR + R + L) × (1 + L) (Eq.4) 

where L is the soil brightness correction factor; L = 0.5 works 

well in most situations and is the default value 

Simple ratio (SR) NIR / R (Eq.5) 

Modified soil adjusted vegetation 

index (MSAVI) 
(2 * NIR + 1 – sqrt ((2 * NIR + 1)2 – 8 * (NIR – R))) / 2 (Eq.6) 

Difference vegetation index (DVI) NIR – R (Eq.7) 

Enhanced vegetation index (EVI)  5 × (NIR – R) / (NIR + 6 R – 7.5 Blue + 1) (Eq.8) 

NIR: near-infrared; R: red band 
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Among the four models under study, we selected the best model based on the 

performance of each of them in terms of predictive power and the accuracy in AGB 

estimates. Then, we performed the selection of the most important variables using the 

best model. Finally, the best model was used to produce the map of the AGB spatial 

distribution in the study area. 

 

Modelling methods 

In this study, four different modelling methods were tested to estimate forest AGB 

including RandomForest (RF), Support vector regression (SVR), multilinear regression 

(MLR), and K-nearest neighbour (KNN). 

MLR is one among parametric prediction methods commonly used to predict forest 

AGB using remotely sensed data (Zhu and Liu, 2015; Fassnacht et al., 2014; Lu et al., 

2016; Zhao et al., 2016). For this study, we used the ordinary least squares regression 

method to predict forest aboveground biomass values. However, compared to the machine 

learning algorithm, the linear regression approach depends on certain assumptions, 

including the linearity in the relationship between explained and explanatory variables, 

independence, and normal distribution of errors with a mean value of zero and constant 

variance. Therefore, the non-respect of these assumptions leads to their violation. Thus, 

the method is less flexible when facing nonlinear problems (Li et al., 2017), and cannot 

adequately handle the multicollinearity problem (Ju et al., 2008). 

The RF algorithm has been widely used to predict aboveground biomass (Avitabile 

et al., 2012; Chen, 2015; Pflugmacher et al., 2014; Vauhkonen et al., 2010; Hudak et al., 

2012; Tanase et al., 2014). A random forest (RF) algorithm is a tree-based modelling 

method using a set of rule-based decisions to assess the relationships between a 

response variable and its predictor variables (Gleason and Im, 2012). This method can 

generate a large number of small trees built through a different randomly permuted 

sample from the input dataset (Breiman, 2001). The target data are categorized through 

two offspring at each node split to maximize homogeneity, and the best split is selected. 

Finally, the target data for each tree are achieved using bootstrap resampling (Were et 

al., 2015). Applying unique tree bagging and selection of a random subset of covariates 

results in minimization of within-group variance and overcoming the over-fitting 

problem (Park et al., 2016). 

The nearest neighbour approach is one of the nonparametric methods used in remote 

sensing technology (Shataee, 2013), to predict the values of variables using the 

information of its neighbours (Cover and Hart, 1967). With these techniques, 

predictions are computed as linear combinations of observations for population units in 

a sample that are similar or nearest in the space of auxiliary variables to population units 

requiring predictions (Chirici et al., 2016). The performance of this algorithm depends 

on the number of neighbours retained by the model (López-Serrano et al., 2016). 

The support vector machine (SVM) algorithm states that each ensemble of predictor 

variables has a unique relationship to the response variable, and sets of explanatory 

variables can be used to identify the rules to predict a response variable from a set of 

predictor variables (Mountrakis et al., 2011). It changes the input dataset into a 

multidimensional hyperplane space by using a kernel function to separate groups of 

input data with similar response variables to predict a response variable (Were et al., 

2015). Indeed, hyperplanes are multidimensional space. In consequence, each 

explanatory variable is represented by axes from which hyperplanes are built. In that 

space, the explained variables are placed by projecting it following its explanatory 
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variable values. The SVM applies support vectors to assign each target to a well-

fragmented space (Görgens et al., 2015). The main idea behind SVM is to minimize 

structural risk and moderate the overfitting problem (Latifi et al., 2015). 

 

Model development and verification of estimation models 

In the field of biomass estimation, the assessment of the model’s performance and 

accuracy are of crucial importance in terms of selecting a suitable model (Mayer and 

Butler, 1993). Thus, the k-fold cross-validation approach was considered to examine the 

performance of the different models. In this research, the 10-fold cross-validation 

approach was mainly applied as it involves the random partitioning of the original dataset 

into k subsets (10) with equal size. Among k subsets, every single subset should be held 

out and used as testing data, while the others k subsets are using as training data. The 

procedure has a k-times number of repetitions. Also, every k subset is used one time for 

testing the model. Then, the results are averaged depending on the k number, to provide 

an overall accuracy. This technique provides many advantages, of which, all instances can 

be used for validating and training the model. In addition to the cross-validation method, 

number of validation measures (Eqs. 9-11), including the root mean square percentage 

error (RMSPE), root mean squared error (RMSE), R2, were calculated to evaluate the 

model’s performance and assess the accuracy of the model using the testing dataset 

(25%). All statistical analyses were carried out using R software. 

Root mean square error (RMSE): 
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Coefficient of determination: 

 

 R2 = 1 –  (Eq.11) 

 

where yi is the observed AGB, ŷ is the predicted AGB, n is the number of plots, and ӯ is 

the mean observed AGB. 

Results 

Analysis of correlation between AGB and predictors subsection 

Table 2 presents the Pearson’s correlation coefficient between all the explanatory 

variables and the forest AGB. Among all the vegetation indices, the forest AGB was 

significantly correlated with the NDVI, SR, and RDVI, respectively. For the spectral 

information, the forest AGB was significantly correlated with the Band4, Band3, 
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Band2, Band7, and Band6, respectively. However, it has been noted that the NDVI, SR, 

and RDVI had the highest positive correlation coefficient values among all the predictor 

variables retained for the present study. At the same time, all spectral bands were 

negatively correlated with AGB. 

 
Table 2. Pearson’s correlation coefficients between independent variables and AGB 

Statistical parameters 

Variables r Variables r Variables r Variables r 

DVI -0.069 MSAVI 0.0005 Band2 -0.42*** Band6 -0.29** 

SAVI 0.021 OSAVI 0.13 Band3 -0.47*** Band7  -0.35** 

EVI -0.020 SR 0.53*** Band4 -0.52***   

NDVI 0.81*** RDVI 0.42*** Band5 -0.12   

Level of significance, *** < 0.001; ** < 0.01; r, correlation coefficient 

 

 

Field-based AGB estimates and predicted AGB estimates 

Table 3 presents the descriptive statistics of the field-level forest aboveground 

biomass and predicted aboveground biomass. Table 3 indicates that the observed AGB 

biomass ranged between 192.22 to 301.11 t ha-1, with a mean value of 250.34 t ha-1, and 

a standard deviation of 29.39 t ha-1. For the predicted biomass, it has been found some 

slight differences among different models and data sources. Also, the predicted biomass 

was slightly greater or smaller than observed biomass, implying the overall 

underestimation or overestimation problems. 

 
Table 3. Plot-level aboveground and predicted biomass statistics of 114 plots 

Data Model Min (t/ha) Max (t/ha) Mean (t/ha) SD (t/ha) 

Vegetation indices 

MLR 187.77 286.91 251.26 26.29 

SVM 204.10 290.53 251.41 25.61 

RF 199.32 290.92 250.39 28.15 

KNN 206.00 287.11 250.23 26.21 

Spectral 

information 

MLR 193.98 279.44 250.03 18.79 

SVM 204.90 284.33 248.61 21.53 

RF 209.90 282.19 251.03 20.92 

KNN 210.89 278.00 250.42 20.27 

Combination VI 

and SI 

MLR 32.19 291.76 242.23 54.12 

SVM 204.11 289.59 251.44 25.04 

RF 200.74 291.75 250.62 27.91 

KNN 212.04 279.01 251.08 22.80 

Field data  192.22 301.11 250.34 29.39 

SD, Min, and Max represent standard deviation, minimum, and maximum 

 

 

AGB estimates based on the machine learning and multilinear regression models 

The performance assessment results of the different machine learning algorithms and 

multilinear regression based on different datasets, including vegetation indices, spectral 
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information, and combination of both vegetation indices and spectral information, are 

presented in Table 4. Overall, the machine learning algorithms provide the best 

prediction performance of aboveground biomass compared to the multilinear regression 

method, but each algorithm has its performance in predicting aboveground biomass 

using different data sources. For example, for the support vector machine method, the 

vegetation indices-based predictors and the combination of both vegetation indices and 

spectral information produced the highest R2 values and smallest RMSE and RMSEPE 

value; spectral information-based variables. For the K- nearest neighbours and RF 

algorithm, the conclusion is similar to the support vector machine, but for the RF, the R2 

value between vegetation indices-based variables and combination of both vegetation 

indices and spectral information-based variables were similar. For multilinear 

regression method, the highest R2 was reached with vegetation indices-based variables. 

However, spectral information-based variables provide the greatest RMSE and RMSPE 

values compared with vegetation indices-based variables and a combination of both 

vegetation indices and spectral information, except for multilinear regression that has 

the greatest value with the combination of all predictors. Thus, in general, the 

vegetation indices-based predictors produced the most accurate results of AGB 

estimation regardless of which models were used, while the spectral information-based 

predictors yielded poor performance. The combination of both vegetation indices and 

spectral information could not improve the modelling performance. According to these 

results, the RandomForest algorithm provides the most accurate results in predicting 

biomass, but the accuracy decreases when using spectral information-based predictors. 

Besides, the Support vector machine yielded the best estimation of the aboveground 

biomass with spectral information-based predictors. Using the RF algorithm, the most 

important variables selected were NDVI, Band4, RDVI, SR, Band2, Band6, Band7, 

Band3, and SAVI, in decreasing order of importance (Fig. 2). 

 

Underestimation and overestimation measure based on the machine learning and 

multilinear regression models 

The goodness of fit can be visualized with the scatterplots showing the linear 

relationships between the predicted AGB and observed AGB from the sample plots 

(Fig. 3). 

After computing the overestimation and underestimation mean values with regard to 

the mean observed values of aboveground biomass (Table 5), it was found that spectral 

data have much more significant overestimation and underestimation mean values than 

vegetation indices data and combination of both spectral information and vegetation 

indices data. The vegetation indices data have the smallest overestimation and 

underestimation mean values. The fact of combining both spectral information data and 

vegetation indices data improves the overestimation and underestimation problems 

regardless of which modelling approaches were used, compared to when the models use 

only spectral information. In view of the modelling algorithms based on the three 

datasets, in general, the machine learning algorithms have much smaller overestimation 

and underestimation problem than multilinear regression regardless of which data 

sources were used. Comparing the performance of machine learning algorithm in 

dealing with this issue, it was found that the RF and SVM have much smaller 

overestimation and underestimation problems than the KNN algorithm. However, the 

RF algorithm has produced the best performance with the lowest overestimation and 

underestimation problems. 
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Table 4. Comparison of AGB prediction performance 

Data Model RMSE (t/ha) RMSE-CV (t/ha) RMSPE (t/ha)  R2 

Vegetation indices 

MLR 17.48 2.12 0.06 0.60 

SVM 16.38 1.32 0.06 0.65 

RF 10.22 1.08 0.04 0.86 

KNN 14.75 2.05 0.06 0.72 

Spectral information 

MLR 27.89 2.25 0.07 0.15 

SVM 24.72 2.04 0.10 0.20 

RF 26.55 2.13 0.11 0.08 

KNN 27.44 2.13 0.11 0.01 

Vegetation indices 

and spectral 

information 

MLR 89.13 1.51 1.58 0.25 

SVM 16.95 1.42 0.07 0.62 

RF 10.44 1.06 0.04 0.86 

KNN 18.47 1.46 0.07 0.55 

 

 
 

 

Figure 2. Important variable ranking by Random forest algorithm. (a) RandomForest with a 

combination of both vegetation indices and spectral information; (b) RandomForest with 

vegetation indices; (c) RandomForest with spectral information 
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Figure 3. Observed AGB versus predicted AGB by KNN, SVM, RF and ML. The solid line 

indicates the optimal regression of observed versus predicted AGB and the dashed line 

indicates the 1:1 line of perfect agreement. (Note: (a) represents VI and SI, (b) represents VI 

and (c) represent SI 

 

 

AGB mapping using RF algorithm 

Based on the RF algorithm, the suitable algorithm in this study concerning its best 

performance, as shown in Table 4 (R2 = 0.86 and RMSE = 10.22 t ha-1), the map of the 
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forest AGB was generated. Figure 4 presents the spatial distribution of the forest AGB 

within our study area. The prediction results produced different statistics, notably 

190.32 t ha-1, 274.02 t ha-1, 302.8 t ha-1, respectively minimum, mean, and maximum 

predicted biomass value. 

 
Table 5. A comparison of mean values of overestimation or underestimation from different 

data and algorithms 

Data Model Overestimation Underestimation 

Vegetation indices 

MLR 11.88 9.65 

SVM 8.74 7.45 

RF 5.17 5.62 

KNN 8.67 11.35 

Spectral information 

MLR 18.96 18.92 

SVM 10.62 14.08 

RF 11.79 12.55 

KNN 15.15 17.88 

Combination VI and SI 

MLR 9.81 23.13 

SVM 8.52 8.05 

RF 5.15 5.34 

KNN 11.94 14.11 
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Figure 4. Aboveground biomass of the study area using the RF algorithm 
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Discussion 

Satellite images with medium resolution represent an alternative method to estimate 

aboveground biomass, especially where the acquisition of hyperspectral images still has 

serious problems. In fact, up to now, the acquisition of hyperspectral images constitutes 

a severe problem due to their high costs, limited accessibility or availability, and their 

manoeuvrability. However, Forest aboveground biomass estimation using remote 

sensing approaches remains a significant challenge requiring numerous studies to found 

related solutions concerning different modelling approaches and remote sensing data. 

According to GAO et al. (2018), the AGB model performance depends on remote 

sensing data, modelling algorithms, and forest type. Lu (2006) has stated that in the 

field of the aboveground biomass estimation based remote sensing technique, 

researchers should take great attention regarding many parameters, among others, the 

remote sensing variables and the modelling technique or algorithms. In this study, we 

compared the potential of four methods, including RandomForest, K-nearest neighbour, 

support vector machine, and multilinear regression, to predict the aboveground biomass 

of tropical forest using the Landsat 8 multispectral OLI. 

In general, the machine learning algorithms have demonstrated the higher ability to 

predict aboveground biomass in comparison with the multilinear regression method, 

regardless of data sources that were used (vegetation indices, spectral bands, and 

combination of both). Indeed, the multilinear regression method yielded the lowest R2 

and the greatest RMSE compared to all other models. Our results are in line with those 

found by Sadeghi et al. (2018) and Pandit and Dube (2018). Indeed, comparing the 

performance of the RF machine learning algorithm and the multilinear regression, the 

authors have reported that the RF algorithm provides high accuracy than multiple linear 

regression for mapping aboveground biomass. Another study conducted by Feng et al. 

(2017) has demonstrated the strong ability of RF and SVR to yield better aboveground 

biomass estimation than multilinear regression. Thus, many reasons were developed to 

explain the low accuracy of multilinear regression compared to the machine learning 

algorithm. Numerous studies have pointed out that the weaker performance of the linear 

regression method is based on the fact of the complexity and non-linearity between 

remote sensing-based variables and aboveground biomass (Baccini et al., 2004; Foody 

et al., 2003; Muukkonen and Heiskanen, 2005). Gao et al. (2018) stated that the 

multiple linear regression method was an essential tool of modelling aboveground 

biomass, especially for the biomass range of 40–120 Mg/ha. Another reason is that the 

linear regression method is less flexible when facing nonlinear problems (Li et al., 

2017), and cannot adequately handle the multicollinearity problem (Ju et al., 2005). 

Still, according to Safari et al. (2018), when the biomass value is lower than saturation 

values, such as 150-ton∕ha, as stated by Feng et al. (2017) and Gizachew et al. (2016), 

and when the relationship between Landsat-derived predictors and observed 

aboveground biomass is expected linear, the linear regression approach can be more 

efficient. In our study, the biomass range is 192.22–301.11 t/ha, greater than 40–120 

Mg/ha. This can explain why the linear regression performed poorly than the machine 

learning algorithm. 

 However, it is essential to point out that the RF algorithm improves the forest 

aboveground biomass estimation. Indeed, the RF algorithm provided better results in 

AGB estimation regardless of the data source that was used. Indeed, recently, numerous 

studies have successfully revealed the effectiveness of the RandomForest algorithm to 

estimate aboveground biomass, and their results are similar to ours. Supporting our 
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results, Liu et al. (2017) reported a significant improvement of the RandomForest 

algorithm compared with the multilinear regression and support vector machine. In this 

study, the RandomForest algorithm has produced better performance in terms of 

accuracy and predictive power of the model (R2 = 0.95 RMSE = 17.73 Mg/ha). Another 

study carried out by Latifi et al. (2010), comparing the effectiveness of the K- nearest 

neighbour methods and the RandomForest algorithm to predict volume and biomass, 

have found accurate biomass estimation with the RandomForest algorithm, compared to 

all other nonparametric methods. Similarly, Sadeghi et al. (2018) also revealed that the 

RF algorithm could produce the accurate results in mapping aboveground biomass at 

the level of boreal forest stands (R2 = 0.62, RMSE = 26 Mg ha-1). 

In this research, we also analysed the power of the RandomForest algorithm using 

the important variable selection method, completed using the parameter tuning 

procedure. The present study has demonstrated the advantage of parameter tuning in 

predicting AGB employing the RF model. For instance, using the vegetation indices-

based variables, the R2 value augmented from 0.86 to 0.91, while the RMSE value 

declined from 10.22 to 9.12 t ha-1. According to Kuhn et al. (2008), removing the less 

important variables from the model has no impact on its performance. However, the 

results obtained in this study proved the opposite. Hence, Biau and Scornet (2016) have 

mentioned that due to its complexity, it is difficult to understand the computation of the 

Random Forest’s parameters. 

Nevertheless, the RandomForest model provides the minimum number of subgroup 

input predictors that will improve the effectiveness of the model using the OOB 

method. Based on OOB data, the RandomForest algorithm produces an estimation error 

without bias for the testing data. Moreover, several parameters such as tree numbers 

(Oshiro et al., 2012), splitting at each node of each tree (Grömping, 2009), determine 

the performance of the algorithm. The sample numbers in each cell, below which the 

cell is not divided (Kuhn, 2008), but equals the default value of the node size (Tyralis 

and Papacharalampous, 2017). However, the present study used the default value, as 

suggested by the literature. The RandomForest algorithm variables have many limit 

factors, one of which is that the ideal number of predictors with the smallest error is not 

selected automatically (Adam et al., 2012). According to Grömping (2009), numerous 

parameters can affect variable importance in RandomForest, one of which is based on 

the choice of mtry. 

Additionally, the author confirmed that it should be better to avoid redundancy to 

achieve a suitable model in finding a minimum number of variables for a good 

prediction. Thus, the model does not necessarily need to contain all the appropriate 

predictors, as long as the results are accurate. In line with Oshiro (2012), in the present 

study, the RandomForest algorithm identified 15 input predictors as the minimum 

subgroup with acceptable prediction power. 

The percentIncMSE and IncNodePurity were used in ranking predictors concerning 

their performance to estimate forest AGB provided an improvement in the accuracy of 

the model. Though the present study accomplished a satisfactory result, it is essential to 

point out that several parameters influence the effectiveness of the model, including the 

number of trees (Genuer et al., 2010) and the split numbers. Kuhn and Johnson (2013) 

recommended considering a minimum number of trees at 1000 for optimizing the 

parameterization of the model. Likewise, as recommended by Verikas et al. (2011), 

optimizing variable numbers to divide a node, rather than default values, leads to 

numerous predictor rankings. 
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However, the performance of each machine learning algorithm varied depending on 

data sources. Indeed, vegetation indices were better related to aboveground biomass 

than spectral information-based variables. The use of spectral information-based 

predictors did severely increase the performance of the model. Our findings support 

those discovered by Pandit et al. (2018) and Lu (2006). In their studies, the authors 

found that the vegetation indices-based variables were better correlated to AGB than 

spectral bands. Indeed, some researchers have revealed the strong relationship between 

vegetation indices-based predictors and biomass (Pearson et al., 1976; Bedard and 

LaPointe, 1987; Hardisky et al., 1984; Deering and Haas, 1980). For example, Piao et 

al. (2007) have reported that vegetation indices computed from spectral information 

reflect the photosynthetic activity of the vegetation and are consequently used for 

biomass monitoring. 

Nevertheless, the fact of combining both vegetation indices-based predictors and 

spectral bands-based predictors could not improve the modelling performance. Hence, 

using RandomForest and, according to the increasing order of importance as shown in 

Figure 2, the most crucial vegetation indices-based variables are NDVI, RDVI, SR, 

DVI, EVI, OSAVI, MSAVI, and SAVI. Our results are in line with those found by Shao 

and Zhang (2016) and Pandit et al. (2018). The authors have found similar variables for 

estimating forest biomass by using Landsat 8 OLI sensor. 

Finally, the present study found that the biomass was more linked to the vegetation 

indices than the spectral bands. Indeed, the best models have been found through the 

use of vegetation indices-based predictors. However, the results based on the linear 

model were less precise compared to those found using machine learning algorithms. 

This may be due to the complex structure of tropical forests that sometimes makes 

linear models ineffective in estimating biomass under these conditions. It should be 

emphasized that, of all the different existing AGB modelling methods, using various 

sensors and field data, the choice of the best model should be preceded by a 

parsimonious evaluation considering the number of parameters of which the sensor 

type, the forest types, and other environmental conditions. However, as Kumar and 

Mutanga (2017) reported, several factors influencing uncertainties in the aboveground 

biomass estimation methods, including vegetation types, landscape types, seasons, and 

data availability. 

Seeing that our study area is located in relatively steep terrain with almost 

homogeneity in the structure of the canopy, and containing high aboveground biomass, 

we suggest for further research to investigate the potential of these four methods for 

predicting forest biomass in various forest conditions, to fill the gap existing in the lack 

of aboveground forest biomass data. 

Conclusions 

The present study compared the potential of different machine learning algorithms 

(RF, KNN, and SVM) and the linear regression method for AGB estimation in the 

tropical forest using Landsat images and field data. Our study demonstrated that the 

machine learning algorithm has the potential to estimate AGB with high precision 

compared to the linear regression method. Comparing the three sets of predictors, the 

vegetation indices have yielded accurate results and the strongest modelling power in 

the present study. Our findings show that the RF algorithm is the best alternative for 

biomass estimation given its best accuracy and high modelling power, regardless of the 
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data source that was used. This study revealed as others the potential of machine 

learning algorithms based on Landsat images in predicting AGB in the tropical forest, 

using freely remotely sensed data, allied to field measurement data. This research 

confirms that machine learning algorithms, especially the RF and SVM, are powerful 

tools for aboveground biomass using variables derived from sensors with medium 

spatial resolution. However, we suggest for further research to examine the potential of 

these machine learning algorithms for predicting forest aboveground biomass in various 

forest conditions. 
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