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Abstract. This study was conducted to investigate the effects of endophyte inoculation on the growth, 

mineral element and organic acid content of non-endophyte inoculated seedlings (E-) and endophyte 

inoculated seedlings (E+) of rice (Oryza sativa L.) under 0, 5, 10, 15 and 20% PEG for 7 days. Osmotic 

stress significantly decreased plant height, shoot dry weight and chlorophyll content of the E- and E+, but 

root length and dry weight were first increased and then decreased. Endophyte inoculation significantly 

increased plant height, shoot dry weight and chlorophyll content, but decreased root length and had no 

effects on root dry weight. Endophyte inoculation significantly increased the K, Ca, Mg, and P contents, 

but reduced the Ni content of the leaves and roots under osmotic stress, while it increased the Mn content 

of the leaves and the Na content of the roots. Under osmotic stress the E+ accumulated more fumarate in 

the leaves in comparison with the E-, as well as more malate, acetate, fumarate and oxalate in the roots. 

These results suggest that endophyte inoculation improved osmotic stress tolerance of rice seedlings by 

enhancing mineral uptake and organic acid accumulation. The application of endophytes has a beneficial 

effect on plant tolerance to osmotic stress. 
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Introduction 

Osmotic stresses include drought and salinity. Drought is the primary factor limiting 

global agricultural production (Sheshbahreh et al., 2019). Drought stress affects many 

physiological processes, including photosynthesis, assimilate transmission, cell 

expansion and mineral nutrient accumulation and transfer (Devnarain et al., 2016). 

Essential elements have clear physiological roles, and plants cannot complete their life 

cycles without them. Generally, drought inhibits the uptake and transport of most mineral 

ions, resulting in nutrient deficiency (Salehi et al., 2016). Maintaining the uptake and 

homeostasis of mineral nutrients can enhance the resistance of plants to drought stress 

(Waraich et al., 2011). Water deficit conditions significantly diminish the P and K content 

of the shoots of Matricaria chamomilla (Salehi et al., 2016). In stressed apple plants, 

uptake of N, P, K, Ca, Mg, Fe, Mn, Cu, Zn, and B was decreased in comparison with that 

of well-watered plants (Liang et al., 2018). 

In general, metal stress significantly increases the organic acid (OA) contents of 

various plant organs (Mahdavian et al., 2016), but the effects of drought stress on OAs 

vary. In response to water stress, the abundance of the majority of OAs decreased in wheat 

(Bowne et al., 2012), maize (Sicher and Barnaby, 2012) and creeping bentgrass 

(Jespersen et al., 2017). However, Timpa et al. (1986) reported that water-stressed cotton 

plants showed greater total amounts of organic acids (malate, citrate and oxalate) in 

comparison with irrigated plants. Under drought stress, citrate, fumarate and malate 
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accumulation was enhanced in the leaves of drought-tolerant wheat plants, but decreased 

in the roots (Kang et al., 2019). Moreover, drought stress increased the citrate content of 

potato leaflets (Barnaby et al., 2015) as well as the succinate content of maize leaves in a 

greenhouse study (Witt et al., 2012) and the malate content of thyme leaves (Ashrafi et 

al., 2018). Kim et al. (2017) found that acetate content is positively correlated with the 

survivability of crop plants such as wheat, rice, maize and canola. Moreover, OAs are 

intermediates involved in the assimilation of carbon and nitrogen, as well as osmotic 

regulation (Ashrafi et al., 2018). 

The interaction between plants and endophytes is helpful for plants to deal with stress 

environment (Jung et al., 2012; Chinnaswamy et al., 2018). Plant growth promoting 

bacteria can improve the seed germination and enhance seedling growth of tomato under 

osmotic stress (Bhatt et al., 2015). Plant growth promoting rhizobacteria (PGPR) can alter 

the ion content of the leaves of tomato plants under salt stress (Van Oosten et al., 2018). 

Plant OAs such as oxalate and butyrate are by various stress (Ashraf and Harris, 2004). 

Endophytic fungus Piriformospora indica increased the amounts of malate, citrate and 

oxalate in the rhizosphere soil of Brassica napus seedlings (Wu et al., 2018). Soil, foliar, 

and soil + foliar applications of PGPR to promote strawberry yield also increased OA 

content under field conditions (Kitir et al., 2019). 

Rice is very sensitive to osmotic stress at different growth stages (Swapna and Shylaraj, 

2017; Nahar et al., 2018). In a previous study, we found that endophyte inoculation 

improves rice growth by enhancing the uptake of nutrient and altering the accumulation 

of OA under Na2CO3 or Pb stress (Li et al., 2017, 2019). There is little information on the 

use of endophytes to improve the accumulation of OAs and uptake of minerals in plants 

under osmotic stress. Therefore, this study was to investigate the potential beneficial 

effects of endophyte application on rice seedling under osmotic stress. 

Materials and methods 

Endophytic fungus and plant material 

Endophytic strain EF0801 was isolated from the leaves of Suaeda salsa grown under 

saline zones across China and screened for Na2CO3 tolerance. Molecular identification of 

fungus EF0801 was based on internal transcribed spacer regions, which showed that it is 

congeneric to Sordariomycetes sp. (99% similarity). EF0801 was cultured on potato 

dextrose agar (PDA) plates at 4°C. To produce a 5% fungus culture, plates containing 

75 mL of PDA solution were inoculated at the 3-day instar stage and cultured for 12 days 

at 24 ± 1℃ with shaking at 180 rpm. The resulting fungal cultures were used for the 

infection treatments. The experimental materials, rice (Oryza sativa L.) seeds (Liaoxing1’) 

were provided by Shenyang Agriculture University, China. Seeds were sterilized with 

NaOCl for 10 min, rinsed, germinated and grown on Hoagland’s solution in an 

illumination chamber. 

Experimental treatments 

Three-day-old rice seedlings were divided into: non endophyte inoculated seedlings 

(E-) and endophyte inoculated seedlings (E+). E- were grown on Hoagland’s solution, 

whereas E+ were grown on Hoagland's solution containing 5% fermentation broth, and 

endophyte EF0801 colonization was achieved via the rice roots. Each group (100 

seedlings/pot) was exposed to 0 (control), 5, 10, 15 or 20% PEG-6000 (w/v in Hoagland 

https://fanyi.so.com/?src=onebox# investigate
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solution). Endophyte inoculation and PEG exposure were carried out simultaneously. 

According the method of Liu and Chen (2007) to determine the degree of endophyte 

inoculation. Roots were cleared in 20% KOH, acidified by 5% acetic acid and then stained. 

More than 90% of the E+ were colonized, whereas the E- were not colonized. The rice 

seedlings were cultured in an illumination chamber (28°C/22°C day/night, 14/10 h 

light/dark, 800 μmol m−2s−1 PPFD, and 80% air humidity). Fresh Hoagland’s solution 

was added every day. After one week, the seedlings were collected and prepared for the 

analyses. 

Estimation of growth parameters 

Shoot height and root length of ten seedlings were recorded and then they were oven-

dried at 80 °C for 48 h, after which the dry weight was measured. 

Estimation of chlorophyll (Chl) content 

Chlorophyll were extracted from fresh leaf with 80% acetone in the dark. Chl content 

was measured using the method reported by Lichtenthaler (1987). 

Estimation of mineral elements 

The leaves and roots of seedlings were oven-dried, ground and then pass through a 

100-mesh sieve. Each sample (100 mg) was digested with HNO3/HClO4 (5:1 [v/v]) at 

2600 kPa for 30 min in a microwave oven and brought to 50 mL with ultrapure water. 

The contents of macroelements (K, Ca, Mg and P) and microelements (Fe, Zn, Mn and 

Ni) were estimated using an inductively coupled plasma atomic emission spectrometer 

(ICP model Liberty 200, Varian Australia Pty. Ltd., Mulgrave Victoria, Australia) as 

reported by Filek et al. (2012). 

 

 

The percentage changes in measured elemental content per seedling 

(%) = [(measured elemental content in E+) - (measured elemental 

content in E-)]/(measured elemental content in E-) ×100 

(Eq.1) 

 

Estimation of OAs 

Fresh sample was ground in deionized water, incubated at 70 °C for 15 min, and 

centrifuged at 10,000 × g at 4 °C for 15 min. The supernatant was filtered, evaporated to 

dryness under reduced pressure at 40 °C, and then dissolved in ultrapure water to allow 

estimation of OAs by high performance liquid chromatography (Agilent 1200 HPLC 

System) according to the methods reported by Li et al. (2017). 

Data analysis 

The normality and homoscedasticity of the data were tested prior to statistical analysis. 

The effects of endophyte and osmotic stress were analyzed using two-way ANOVA. The 

threshold of significance for differences among the treatments was used LSD multiple 

comparisons (p<0.05). 

https://www.baidu.com/link?url=R3qhKQvgH51AWH01teJpFQO1GPjd1Si5ci-9kOJsG5aDFilj7TOtYlpsOC1kIuhm-h3MhZ4Ila6Jb9MndtTZvd9XbPwMuxlnffYTlrKZlD25tfPDWHFdhZSTQfdpQfnT&wd=&eqid=8e08a874000520ad000000025d22eb1e
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Results 

Growth parameter and chlorophyll (Chl) content 

Osmotic stress significantly decreased the plant height and Chl content of the E- and 

E+ (Fig. 1), but first increased and then decreased root length (Table 1). Endophyte 

inoculation significantly increased plant height and Chl content, but significantly 

decreased root length under osmotic stress. 

 

  

 

Figure 1. Effects of endophyte inoculation on the growth of rice seedlings subjected to osmotic 

stress 

 

 
Table 1. Effects of endophye inoculation on the growth, dry weight and Chl content of rice 

seedlings subjected to osmotic stress 

Treatments 
Plant height 

(cm) 

Root length 

(cm) 

Dry weight of 

shoots 

(mg/10 plant) 

Dry weight of 

roots 

(mg/10 plant) 

Chla+b content 

(mg/g·FW) 

E- 

0 

5 

10 

15 

20 

E+ 

0 

5 

10 

15 

20 

 

18.89±0.71cd 

17.75±0.95e 

16.59±0.87f 

14.94±0.90g 

12.43±0.69i 

 

22.99±0.84a 

21.25±1.17b 

19.38±0.78c 

18.29±1.04de 

13.70±1.01h 

 

9.12±0.58b 

9.67±0.46a 

7.94±0.56c 

7.40±0.72cd 

6.90±0.73ed 

 

8.03±0.73c 

8.80±0.66b 

7.22±0.41de 

7.06±0.86de 

6.36±0.56f 

 

70.68±4.29a 

54.76±3.09cd 

49.15±2.33de 

44.50±2.75ef 

39.37±2.67f 

 

72.47±4.92a 

63.40±4.86b 

57.12±3.02bc 

53.12±3.82cd 

43.12±4.06ef 

 

22.18±0.39bc 

24.77±0.36a 

22.31±0.23bc 

21.98±0.69c 

21.74±1.11c 

 

22.34±0.65bc 

25.09±0.66a 

23.10±0.35b 

22.06±0.49c 

21.87±0.21c 

 

2.60±0.06c 

2.44±0.18cd 

2.30±0.15cd 

2.13±0.18de 

1.82±0.13e 

 

3.74±0.22a 

3.52±0.34ab 

3.36±0.26b 

2.58±0.18c 

2.23±0.20d 

Values are the mean ± standard deviation of three replicates. Different letters indicate a significant 

difference at P < 0.05 (LSD test) 

 

 

Osmotic stress significantly decreased the shoot dry weight of the E- and E+, but first 

increased and then decreased the root dry weight (Table 1). Endophyte inoculation 

significantly increased the shoot dry weight under 5–15% PEG, but showed no effects on 

the root dry weight. 



Li et al.: Endophyte effects mineral elements and organic acids under osmotic stress 

- 767 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 19(1):763-775. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/1901_763775 

© 2021, ALÖKI Kft., Budapest, Hungary 

Osmotic stress significantly decreased the shoot dry weight of the E- and E+, but first 

increased and then decreased the root dry weight (Table 1). Endophyte inoculation 

significantly increased the shoot dry weight under 5–15% PEG, but showed no effects on 

the root dry weight. 

The elemental content of leaves 

Osmotic stress significantly decreased the K and Fe contents of the E- (Fig. 2A,D). 

Endophyte inculation significantly increased the K content of the leaves of plants 

subjected to 20% PEG, but it had no influence on Fe content. 

 

Figure 2. Effects of endophyte inoculation on the contents of macroelements (K, Ca, Mg and P) 

and microelements (Na, Fe, Ni and Mn) in the leaves of rice seedlings subjected to osmotic 

stress. The bars indicate the standard deviation (n=3). Different letters indicate a significant 

difference at P < 0.05 (LSD test) 

 

 

Osmotic stress had no influence on the Na, Mg, P, or Mn contents in the leaves of the 

E- (Fig. 2B,E,G,H). In the E+ seedlings, osmotic stress increased Mn content, while it 

first increased and then decreased the Na, Mg and P contents. Endophyte inculation 

significantly increased the Mg, P and Mn contents in plants subjected to osmotic stress 
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(except Mn in plants subjected to 5% PEG), while it only increased the Na content in 

plants subjected to 5% PEG. 

Osmotic stress first increased and then decreased Ca content, while it increased Ni 

content in the leaves of E- and E+ (Fig. 2C,F). Endophyte inoculation significantly 

increased the Ca content of plants subjected to 5% and 10% PEG, but it significantly 

decreased Ni content under osmotic stress. 

The elemental content of roots 

Osmotic stress had no influence on the K and Fe contents in the roots of the E- 

(Fig. 3A,D). Endophyte inculation significantly increased the K content under 10–20% 

PEG, but increased the Fe content under no PEG. 

 

Figure 3. Effects of endophyte inoculation on the contents of macroelements (K, Ca, Mg and P) 

and microelements (Na, Fe, Ni and Mn) in the roots of rice seedlings subjected to osmotic 

stress. The bars indicate the standard deviation (n=3). Different letters indicate a significant 

difference at P < 0.05 (LSD test) 

 

 

Osmotic stress first increased and then decreased the Na and Ni contents in the roots 

of the E- (Fig. 3B,F). Endophyte inculation significantly increased the Na content of 
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plants subjected to 0–10% PEG, but it significantly decreased Ni content under osmotic 

stress. 

Osmotic stress significantly decreased the Ca, Mg, P, Mn contents in the roots of the 

E- (Fig. 3C,E,G,H). Endophyte inculation significantly decreased the Ca content of plants 

under no PEG, but it significantly increased that of plants subjected to 10–20% PEG. 

Endophyte inculation significantly increased the P content of plants subjected to 10% and 

15% PEG, while it had no influence on the Mg or Mn contents of plants subjected to PEG, 

with the exception of increased Mg content in plants subjected to 5% PEG. 

The percentage changes of elemental content 

For the percentage changes in the measured elemental content of the E+ relative to the 

E-, positive values show an increase, whereas negative values show a decrease according 

to Eq.1 (Table 2). Under osmotic stress, the percentage changes of most measured 

elements were positive values, which showed that the endophyte enhanced the total 

elemental content per seedling. However, the percentage change of Ni content was 

negative, which showed that the endophyte reduced the total Ni content per seedling. 

 
Table 2. Effects of endophye inoculation on the percentage changes in element contents per 

seedling subjected to osmotic stress 

PEG 

(%) 
K Ca Mg P Na Fe Ni Mn 

0 

5 

10 

15 

20 

-2.28±0.51 

21.62±6.14 

35.80±2.55 

33.28±3.74 

31.81±3.65 

-11.21±2.18 

48.08±4.44 

47.14±5.10 

26.60±1.74 

46.68±6.01 

15.53±1.24 

64.73±7.15 

47.92±3.58 

51.11±6.02 

45.80±5.14 

-3.64±0.61 

34.78±2.63 

39.32±2.12 

32.99±3.41 

23.68±3.11 

29.98±3.47 

66.42±5.89 

65.49±6.47 

21.83±2.28 

-6.92±3.16 

18.92±3.14 

36.33±4.55 

15.70±1.89 

3.69±1.37 

20.87±4.47 

-42.57±5.38 

-30.47±5.61 

-31.61±3.16 

-27.57±2.28 

-23.92±4.25 

-5.33±1.13 

20.37±1.87 

37.42±3.61 

51.41±5.17 

61.74±6.25 

 

 

The OA content of leaves 

Osmotic stress significantly decreased the tartrate, citrate and fumarate contents 

(Fig. 4A,E,G). Endophyte inoculation showed no significant effects on the tartrate or 

citrate contents of the leaves in plants under osmotic stress, with the exception of the 

tartrate content in plants under 20% PEG and the citrate content in plants under no PEG. 

However, endophyte inoculation significantly increased the fumarate content of the 

leaves in the E+ under osmotic stress. 

In contrast, osmotic stress significantly increased the acetate and lactate contents of 

the E- (Fig. 4C,D). The lactate content of the E- and E+ did not differ significantly except 

in those subjected to 20% PEG, while the acetate content of the E+ was significantly 

greater than that of the E- subjected to 0 and 20% PEG. 

Osmotic stress first increased and then decreased the malate and succinate contents of 

the E- (Fig. 4B,F). The malate content of the E+ was significantly greater than that of E- 

subjected to no PEG, and the succinate content of the E+ was significantly greater than 

that of E- subjected to 0 and 10% PEG. 

Osmotic stress and endophyte inoculation had no significant effects on the oxalate 

content in leaves (Fig. 4H). 
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Figure 4. Effects of endophyte inoculation on the accumulation of eight OAs in the leaves of 

rice seedlings subjected to osmotic stress. The bars indicate the standard deviation (n=3). 

Different letters indicate a significant difference at P < 0.05 (LSD test) 

 

 

The OA content of roots 

Osmotic stress significantly decreased the tartrate, malate, citrate and oxalate contents 

of the E- (Fig. 5A,B,E,H). Compared to the E-, the tartrate content in the roots of the E+ 

subjected to 5% PEG was significantly reduced, but it was significantly increased in those 

subjected to 20% PEG. The malate content of the E+ was significantly greater than that 

of the E- subjected to 10% and 20% PEG, while the oxalate content of the E+ was 

significantly greater than that of the E- seedlings subjected to 15% and 20% PEG. 

Endophyte inoculation had no significant effect on the citrate content in roots. 

Osmotic stress significantly increased the lactate and succinate contents of the E- 

(Fig. 5C,F), but endophyte inoculation had no significant effect on either of these OAs. 

Osmotic stress first decreased and then increased the acetate content (Fig. 5D), 

whereas first increased and then decreased the fumarate content of the E- (Fig. 5G). The 

acetate content of the E+ was significantly greater than that of E- subjected to 5% and 

10% PEG. The fumarate content of the E+ was significantly lower than that of E- 

subjected to 5% PEG, but it was significantly greater than that of E- subjected to 15% and 

20% PEG. 
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Figure 5. Effects of endophyte inoculation on the accumulation of eight OAs in the roots of rice 

seedlings subjected to osmotic stress. The bars indicate the standard deviation (n=3). Different 

letters indicate a significant difference at P < 0.05 (LSD test) 

 

 

Discussion 

It is well established that osmotic stress significantly inhibits growth by plants 

(Swapna and Shylaraj, 2017; Nahar et al., 2018). We found that osmotic stress produced 

significant depressive effect on the rice growth (Table 1). PGPR has been shown to 

increase plant resistance to osmotic stress (Ghosh et al., 2019). Our results suggest that 

endophyte inoculation alleviated decreases in plant height, the shoot dry weight and Chl 

content caused by osmotic stress. 

Ion-mediated up-regulation of xylem hydraulics plays an important role in optimizing 

the translocation of water and nutrients, as well as in regulating plant tolerance (Oddo et 

al., 2011). The water potential in soil significantly affected the uptake of mineral nutrients 

(Salehi et al., 2016). Drought stress prevents the absorption of mineral nutrients by tomato 

(Sánchez-Rodríguez et al., 2010). Salt stress decreased Ca, Mg, Fe, and Zn concentrations 

in lucerne and white melilot (Yasar et al., 2014). In this research, we found that osmotic 

stress significantly decreased the uptake of K and Fe by the leaves, as well as the uptake 

of Ca, Mg, and P by the roots. Sucre and Suárez (2011) suggest that plants increase 

https://fanyi.so.com/#translocation
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absorption of Na+ when they are subjected to water stress. Similar to their results, we 

noted that the Na content of rice seedlings was significantly increased under low-

concentration PEG. The content of microelement Ni in rice seedlings was significantly 

increased by osmotic stress, which could lead to toxicity. 

Endophytes can improve the uptake of many mineral nutrients in plants (Song et al., 

2014). Reestablishing the ionic homeostasis of plants under osmotic stress can increase 

plant resistance, which can decrease the severity of injuries caused by water deficits and 

alleviate growth inhibition (Waraich et al., 2011). We observed that endophyte inculation 

enhanced accumulation of most mineral nutrients which alleviated the detrimental effect 

of osmotic stress on rice seedlings (Table 2). Increased abundance of mineral nutrients, 

particularly K, Ca, Mg and P, can improve the cell water potential, stomatal conductance, 

Chl content and photosynthetic rate of plants (Ruiz-Sánchez et al., 2010). Furthermore, 

endophyte inculation inhibited accumulation of Ni under osmotic stress, which may have 

alleviated the toxic effect of excessive Ni on the E+. 

OAs play a vital role in protecting plants from stress by regulating osmotic potential, 

ionic balance, and other cellular processes (Ma et al., 2011). Accumulation of OAs is an 

important process involved in the development of increased drought tolerance (Jespersen 

et al., 2017; Kang et al., 2019). In Phyllanthus, drought stress increased the abundance of 

OAs such as malic, succinic, and citric acids (Filho et al., 2018). Moreover, the increased 

abundance of OA, such as malate, citrate and oxalate, can improve drought tolerance of 

ipt transgenic creeping bentgrass (Merewitz et al., 2012). In this study, the lactate and 

succinate contents of rice increased as osmotic stress increased. However, Dickinson et 

al. (2018) found that legumes suffering from abiotic stress showed decreased abundance 

of many OAs, including malate and citrate. We also found that the tartrate, malate and 

citrate contents of rice decreased as osmotic stress increased. Griesser et al. (2015) 

reported increased abundance of citrate, succinate and tartarate in rapevine leaves under 

drought stress, while that of malate was decreased. These results suggest that different 

OAs change in different manners in response to stress. 

Endophytes can modulate OA metabolism in plants (Singh et al., 2018). Wu et al. 

(2018) showed that the accumulation of OAs (oxalate, malate and citrate) in the 

rhizosphere of Brassica napus was improved by endophytic fungus Piriformospora 

indica. The tolerance of Nicotiana benthamiana to water stress was enhanced due to 

increased accumulation of some OAs as a result of the presence of fungal endophytes 

(Dastogeer et al., 2017). In this study, endophyte inoculation significantly enhanced the 

accumulation of fumarate in the leaves of rice seedlings, and the accumulation of malate, 

oxalate, fumarate in the roots, which indicated that the leaves and roots trigger different 

changes in OA metabolism to increase tolerance to water stress. 

Conclusions 

Osmotic stress altered the accumulation of OAs and inhibited the uptake of nutrient 

element by rice seedlings, which alter plant growth and stress tolerance. The endophyte 

used in the present study is capable of enhancing accumulation of some OAs and 

improving nutrient absorption. The increased content of OAs and nutrient elements in E+ 

promoted rice growth, facilitated osmotic adjustment, and induced osmotic stress 

tolerance. These findings suggest that endophytes could be used to improve plant 

resistance to abiotic stress in an eco-friendly way. There are intricate interactions between 
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plant metabolism changes and each stress, so future study will investigate the signaling 

pathways involved in the activation of these metabolism changes. 
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