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Abstract. Soil contamination by heavy metals has become a severe environmental issue in the world due 

to rapid development of urbanisation, industrial, mining, agricultural and natural processes, and chemical 

compounds. Reliable and quality results quantify the adverse effects of these factors. A precise and cost-

efficient study depends on adequate background research, a well-planned sampling design and strategy, 

quality data, appropriate selection and implementation of analytical techniques and investigation. The 

investigation methods for heavy metal soil or land contaminations drive decision making and remediation 

which is very expensive. Therefore, this study offers comprehensive and comparative review on data 

organisation and treatment; guidelines, legislation of heavy metals; data analysis and investigation 

methods. The primary objectives of the review are to discuss the various stages involved in the 

investigation of heavy metals/land for site engineers and environmental scientists. Data analysis methods 

include exploring contamination indices, statistical and multivariate statistical analysis methods, 

interpolation techniques, geostatistical estimation, simulation, and combined methods. Strengths, 

weaknesses and the application scopes of these methods and the resulting models used are critical for 

success in environmental modelling. 

Keywords: data analysis methods, contamination indices, multivariate analysis, geostatistical 

simulation, and spatial interpolation methods 

Introduction 

Heavy metal contamination in soil or land has become an increasingly common and 

serious problem and threat to every country of the world due to rapid development of 

technology, economy, public awareness, and society. In Europe, mineral oil and heavy 

metals are the main contaminants contributing by 50% to soil contamination. The 

management of contaminated sites is estimated to cost around six billion Euros 

annually (Panagos et al., 2013). In the past, soil contamination was not considered as 

important as air and water pollution, because it was often with wide range and was 

more difficult to be controlled and governed than air and water pollution. However, in 

recent years the soil contamination in developed countries has become an essential 

issue thus, more and more attention is paid to this issue which has become a 

significant topic of environmental protection worldwide (Su et al., 2014). 

Characteristics of heavy metal contamination of soils include wide distributions, 

strong latency, irreversibility, remediation hardness, high cost and complex heavy 

metal contamination. In the world’s top ten environmental events, two events have 

been related to heavy metal contamination (Yang and Sun, 2009). These are soil, air, 

and water pollutions, caused by heavy metals, which are a serious threat to almost 

every country. Heavy metals have been effectively used by humans for thousands of 

years. Although, several adverse health effects of heavy metals have been known for a 

long time, exposure to heavy metals continues and is even increasing in some parts of 

the world, particularly in less developed countries (Jarup, 2013). 



Ersoy: Critical review of the environmental investigation on soil heavy metal contamination 

- 3854 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 19(5):3853-3878. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/1905_38533878 

© 2021, ALÖKI Kft., Budapest, Hungary 

Heavy metals constitute an ill-defined group of inorganic chemical hazards, and at 

contaminated sites Pb, Cr, As, Zn, Cd, Cu, Hg and Ni are found most commonly. 

Source of heavy metal contamination in soil may be classified into two categories, 

natural and anthropogenic. The spatial distribution of naturally originating heavy metals 

is highly heterogeneous and different concentrations exist in different soils. Heavy 

metals have been used for thousands of years in a large variety of industrial products, 

which have been deposited for a long time as waste. The main anthropogenic sources of 

heavy metals are agricultural activities, metallurgical activities, mining operations, 

energy production, transportation, micro-electronic products, and waste disposal. They 

are found in different forms such as gaseous, particulate, aerosol/aqueous solid and 

emanate both diffuse and point sources. Literature research showed that exposure of 

human health from contaminated soil by heavy metals is directly implicated as 

ingestion, inhalation, skin contact and dermal absorption. Human health is also 

indirectly affected through contaminating the food, water, and atmosphere. Different 

contaminants originate different negative effects on human health and environment 

depending on their properties. These are dispersion solubility in water, bioavailability, 

carcinogenicity, bioaccumulation, and so on. 

Sampling efficiency and representatives in soil contamination by heavy metals are 

affected by various factors which include sampling design and strategy, sampling 

location, depth, density, sampling stages and methods. These factors have been widely 

studied by many researchers (e.g. Coşkun et al., 2006; Davis et al., 2009; Maas et al., 

2010; Sun et al., 2010; Wang and Lu, 2011; Lu et al., 2012; Shan et al., 2013; 

Kelepertzis, 2014; Haung et al., 2015; Mihailovic et al., 2015; Zhou et al., 2016; Moore 

et al., 2016). The factors optimisation and economic cost of soil sampling are typically 

analysed by geostatistical techniques and Geographic Information System (GIS) 

integrated multivariate statistical methods. 

Toxic levels of heavy metals may be various in different countries because of 

different cultures and different protection methods of environment and commonly 

health. Thus, a large variation in environmental and human health regulations and their 

effects for heavy metal contaminants in soil may be observed trough the world. 

Regulations in the developed countries for soil contamination with heavy metals may be 

guidance and useful to investigate risk assessment and decision-making for the 

developing countries. Therefore, total concentration levels of heavy metal contaminants 

for soil quality guidelines and the protection of environmental health in the United 

Kingdom, the European Community, the Netherlands, Canada, and Australia are 

presented in Tables 1-4, respectively. There are also many environmental laws and 

regulations for metal contaminants in soil around the world including USA, Germany, 

Japan, China, Singapore, and Malaysia. For example, there are several federal and state 

sets of regulations and standards in the United States of America (USA). The most 

widely recognised methodology for risk assessment of an environmental contaminant 

developed by US Environment Protection Agency (USEPA, 2011). A wide variation in 

standards, regulations and their effects were observed throughout the world. In 

summary, most current legislations are still based on the total concentrations of 

contaminants in soil. Consequently, these regulations and limits may act as a guideline 

to purpose risk assessment methodologies, model tools, and exposure scenarios, 

especially for the developing or less developed countries. 
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Table 1. Heavy metal guideline in soil contaminated land exposure assessment (CLEA, 

2009) 

Heavy metals Function of land use CLEA soil guideline value (mg/kg) 

Pb 

Residential with home grown produce 

Residential without home grown produce 

Allotments 

Commercial 

200 

310 

80 

2300 

Cr VI 

Residential with home grown produce 

Residential without home grown produce 

Allotments 

Commercial 

21 

21 

170 

49 

Cr 

Residential with plant uptake 

Residential without plant uptake 

Commercial and industrial 

130 

200 

5000 

As 

Residential with home grown produce 

Residential without home grown produce 

Allotment 

Commercial  

37 

40 

49 

640 

Cd 

Residential with home grown produce 

Residential without home grown produce 

Allotment 

Commercial  

22 

150 

3.9 

410 

Hg 

Residential 

Allotment 

Commercial 

10 

26 

26 

Ni 

Residential 

Allotment 

Commercial 

130 

230 

1800 

 

 
Table 2. Heavy metal soil and sediment guideline values in the Netherlands (The Ministry of 

Housing, 2011) 

Heavy metals Target value (mg/kg) Intervention value (mg/kg) 

Pb 85 530 

Cr 100 380 

As 29 55 

Zn 140 720 

Cd 0.8 12 

Cu 36 190 

Hg 0.3 10 

Ni 35 210 

 

 

The key to effective quality assessment of soil contamination by heavy metals is in the 

use of investigation methods. There is currently a wide arrange of investigation methods 

used to evaluate soil contamination. A discussion of the advantages and limitations of 

different soil contamination assessment methods such as contamination indices, statistical 

analysis, spatial interpolation techniques, geostatistical methods and combined methods is 

presented. Contamination indices are the most widely used significant tools for the 

comprehensive evaluation and the grade of soil contamination. Many authors previously 

described several indices which are defined for evaluation of the degree of soil 
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contamination in recent publications (Wu et al., 2014; Kovalska et al., 2018). In this study, 

different aspects, and significant characteristics of the indices such as the similarities and 

differences, comparisons, advantages and disadvantages were briefly evaluated. This 

ensures the selection of appropriate indices in the environmental study of different soils. 

 
Table 3. Soil and quality guidelines for the protection of environmental health values in 

Canada for land use (Canadian Council of Ministers of the Environment, 2010) 

Heavy 

metals 

Agricultural 

(mg/kg) 

Residential/park land 

(mg/kg) 

Commercial 

(mg/kg) 

Industrial 

(mg/kg) 

Pb 70 140 260 600 

Cr 64 64 87 87 

As 12 12 12 12 

Zn 200 200 360 360 

Cd 1.4 10 22 22 

Cu 63 63 91 91 

Hg 6.6 6.6 24 50 

Ni 50 50 50 50 

 

 
Table 4. Heavy metal levels in soil in Australia (Department of Environment and 

Conservation, 2010) 

Heavy 

metals 

Ecological 

level (mg/kg) 

Residential/garden 

(mg/kg) 

Residential/apartments/flats 

minimum soil access (mg/kg) 

Parks/recreational/playing 

fields area (mg/kg) 

Commercial/industrial 

(mg/kg) 

Pb 600 300 1200 600 1500 

Cr III 400 120000 48000 240000 60000 

Cr VI 1 100 4000 200 500 

As 20 100 400 200 500 

Zn 200 7000 28000 4000 35000 

Cd 3 20 80 40 100 

Cu 100 1000 4000 2000 5000 

Hg 1 15 60 30 75 

Ni 60 600 2400 600 3000 

 

 

Soil contamination prediction requires frequent use of statistics. Statistical analysis has 

been used for a long time to address soil contamination as univariate or classical statistics 

and multivariate statistical analysis. Univariate statistical tools present several facilities 

including improving understanding of data and soil contamination, providing data quality, 

organising, and grouping data information, and making inferences and estimations. 

Multivariate statistical analysis was not alone widely used in environmental studies. 

However, recently, the use of multivariate statistical analysis integrated with GIS have 

been successfully studied in the identification of metal sources, assessment of metal 

behaviour, soil quality, mapping of metal spatial distribution in regions (Saby et al., 2009; 

Lu et al., 2012; Shao et al., 2014; Haung et al., 2015; Zhou et al., 2016; Ali et al., 2016; 

Moore et al., 2016; Gabarron et al., 2017). GIS is a system designed to capture, store, 

manipulate, analyse, manage, and present all types of geographical data (ESRI, 1994). 

GIS is increasingly used as the most comprehensive tools for life and industry including 

mapping, environmental impact analyses, geological and mining studies, hydrology, 

archaeology, rural and urban planning, disaster management and mitigation, crime 

statistics, health and medical resource, management, transportation planning, agricultural 
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applications, climate and meteorology, telecom and network services, and many other 

areas. GIS provides spatial data entry, management, and retrieval, analysis, and visual 

functions. 

Geostatistics contains different methods based on regionalised theory and stationary 

for the analysis, estimation and simulation of data correlated in space or time. 

Geostatistics was initially developed for mineral resource estimation and geological 

modelling (David, 1977; Isaaks and Srivastava, 1989; Goovaerts, 1997; Rossi and 

Deutsch, 2014), and later enhanced for spatial analysis of environmental issues (Burges 

and Webster, 1980; Goovaerts, 1999; Webster and Oliver, 2007; Oliver, 2010). A major 

aspect of geostatistical modelling is to quantitatively measure spatial variability by 

subsequent estimation and simulation. 

Traditional interpolation or Inverse Distance Weighting (IDW) and geostatistical 

interpolation or Kriging methods have been increasingly used to estimate the spatial 

distribution of contaminants in soil for 1990’s years (Zhang et al., 1995; Steiger et al., 

1996; Journel, 1998; Meirvenne and Goovaerts, 2001). However, these methods have 

smoothing effects, results in less variance in the estimation than in the observed data. 

Recently, on the other hand, geostatistical simulations, the most commonly used 

Sequential Gaussian Simulation (SGS), have overcome the limitations intrinsic in 

conventional and kriging-based interpolation techniques. SGS reproduce original 

statistics, histograms and variograms of the spatial variability for the data without 

smoothing effects. SGS are the most frequently applied in mining industry and 

environmental studies (Goovaerts al., 1996; Soares, 2001; Meirvenne and Goovaerts, 

2001; Pereira et al., 2001; Franco et al., 2006; Ersoy et al., 2008; De Almedia, 2010; Qu 

et al., 2013; Rossi and Deutsch, 2014; Garcia-Lorezo et al., 2014; Albuquerque et al., 

2017; Zhang et al., 2017; Ersoy and Yünsel, 2018). 

This review fills a knowledge gap in soil contamination by heavy metals. There are 

many review publications available that describe only single issue and provide few or no 

guidelines necessary focusing on practical applications of the environmental research. 

Descriptions, comparisons, advantages and disadvantages and integrations of the 

investigation methods or models for soil contamination by heavy metals to use in the 

spatial distribution, risk analysis and decision making are presented. The paper outlines 

soil guideline limits and characteristics of heavy metals, establishes investigation and 

application methods to soil contamination, explores data organisation and treatment and 

factor affecting the performance of the application methods, demonstrates validation test 

of estimation and simulation. The workflow approach of the review for contaminated site 

characterisation is presented in Figure 1. This study is presented to describe all important 

issues in an environmental study based on the workflow except for sampling issues and 

analytical techniques. These points help to evaluate results, risk assessment, and finally 

decision making and remediation for responsible authorities. The review may be used by 

a wide range practitioners, environmental scientists and engineers, and others involved in 

soil contamination by heavy metals in the world. 

Investigation methods used in the examination of soil contamination by heavy 

metals 

Contamination indices 

Contamination indices are currently and widely used for the assessment of soil 

contamination. They also evaluate soil quality and the prediction of future ecosystem 
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sustainability especially for agricultural purposes. Moreover, the indices provide to 

determine the source of heavy metals, natural processes, or anthropogenic activities. 

The most widely applied indices are critically summarised from literature at the 

following. Uses, advantages, disadvantages and related references are given in Table 5. 

This tabulation is the key assessment of soil contamination by heavy metals. A recent 

study related to the description of a wide spectrum of contamination indices can be 

found in Kowalska et al. (2018). 

 

 

Figure 1. Site investigation methods workflow in soil contamination by heavy metals 
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Table 5. The main characteristics of the most widely used contamination indices in soil 

contamination by heavy metals 

Index Use extent Advantages Disadvantages References 

Igeo 

• Simple, easy and most widely 

used 

• Contamination degree of single 

heavy metal 

• GB 

• The comparison of the current 

and previous contamination 

• 1.5 multiple factors reduce 

lithogenic effect 

• Correct scale 

• Bad GB selection, bad results 

• Ignores natural geochemical 

changes 

• Natural variability in GB 

Chen et al., 2015 

Karim et al., 2015 

Sayadi et al., 2015 
Wang et al., 2005 

Su et al., 2014 

PI 

• Contamination degree of single 

heavy metal 

• Easy and widely use 

• GB 

• Correct scale 

• Ignores natural variability 

• Improper selection GB, wrong 

results 

Begum et al., 2014 
Chen et al., 2015 

Karim et al., 2015 

Sayadi et al., 2015 

EF 

• Identification of heavy metal 

origin 

• Comparison of heavy metal 

concentrations 

• Predicts heavy metal origin and 

anthropogenic effect 

• Evaluation of the contamination 

by single heavy metal 

• Reduces heavy metal variability 

• Correct scale 

• Results depend on GB selection 

• Assessment of uncontaminated 

contents 

Inengite et al., 2015 

Karim et al., 2015 

Thabet et al., 2014 
Sayadi et al., 2015 

Varol., 2011 

Wang et al., 2005 

CF 
• Soil quality 

• Toxic materials 

• Single for each metal 

• Containing the difference 

between sample and reference 

values 

• Easy and direct application 

• Correct scale 

• Ignores the variability of 

natural process and presence of 

heavy metals 

• No GB 

• Previous reference value 

necessary before contamination 

Hakanson, 1980 

Inengite et al., 2015 

PIsum 
• Evaluation of contaminants 

group for all contamination 

• Integrates all heavy metals 

• Comparing for contamination 

in different soil 

• Depend on PI values 

• Ignores the variation of natural 

process and the presence of 
heavy metals 

• Selection of GB is important 

• Missing of correct scale 

Hakanson, 1980 

Inengite et al., 2015 

PLI 

• Evaluation of degree of 

contamination 

• Easy and widely used 

• Integrates a number of heavy 

metals 

• Comparing of contamination in 

different soil 

• Depends on PI values 

• GB use 

• Related GB 

• Ignores natural process and 

presence of heavy metals 

Karim et al., 2015 
Thabet et al., 2014 

Pejman et al., 2015 

ExF 

• Contaminated site point 

• All soil evaluation 

• Easy use 

• Integrates all heavy metals 

• Not widely used 

• Ignores natural process 

• No correct scale 

Babelewska, 2010 

GB: geochemical background value 

 

 

Geoaccumulation Index (Igeo) was first introduced by Müller (1969). It provides the 

assessment of soil contamination by heavy metals depending on its content in a horizon 

by comparing differences between current and background concentrations. Igeo is 

defined by Equation 1: 

 

  (Eq.1) 

 

where Cn is the measured concentration of the heavy metal and GB is the geochemical 

background value of the heavy metal. 1.5 is a constant, providing for an analysis of the 

variability of the data due to natural processes. Igeo values has been classified into 

seven quality classes (Müller, 1969; Li et al., 2014). 

Single Pollution Index (PI) is used to assess greatest heavy metal accumulation in 

soil. It is expressed as follows (Eq. 2): 

 

  (Eq.2) 
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where Cn is the content of heavy metal and GB is the geochemical background value. 

Enrichment Factor (EF) is a measure of the effects of heavy metal concentrations by 

anthropogenic activity in soil (Eq. 3). It is computed in the following formula 

(Sutherland, 2000). 

 

  (Eq.3) 

 

where Lv (sample) is the concentration of the reference element in the soil. GB is the 

value of geochemical background. Reference metals are Fe/Al/Ca/Ti/Sc/Mn. If the EF 

value is less than 1.5, there is no heavy metal contamination in soil occurred with 

natural processes. If EF is more than 1.5, the heavy metal contamination formed as a 

result of anthropogenic processes (Elias and Gbadegesin, 2011). 

Contamination Factor (CF) measures the content of heavy metal from the surface of 

the soil and values of pre-industrial reference levels defined by Hakanson (1980). CF is 

calculated by Equation 4: 

 

  (Eq.4) 

 

where Cm is mean content of heavy metal of at least five samples and Cp-i is pre-

industrial reference value. 

Sum of Contamination (PIsum) is defined as the sum of all determined concentrations 

of heavy metals, given by Gong et al. (2008). PIsum is computed using Equation 5: 

 

  (Eq.5) 

 

where PI is calculated values of single pollution index, n is the number of total heavy 

metals. 

Pollution Load Index (PLI) is used for the sum of assessment of heavy metal 

contamination in soil (Varol, 2011). PLI is determined from Equation 6: 

 

  (Eq.6) 

 

where n is the number of studied heavy metals and PI is calculated values of the single 

pollution index. 

Exposure Factor (ExF) is used to measure the greatest heavy metal accumulation in the 

study area (Eq. 7). This is calculated from the following formula (Babelewska, 2010). 

 

  (Eq.7) 

 

where Cn is the content of heavy metal at the sampling point, Cav is average content of 

heavy metal in the soil profile. 

Other indices of less use are Nemerow Pollution index, (PINemerow: Gong et al., 2008); 

Average Single Pollution Index (PIavg: Gong et al., 2008), Vector Modulus of pollution 

Index (PIvector: Gong et al., 2008), Background Enrichment Factor (PIN: Caeiro et al., 

2005), Multi Element Contamination (MEC: Adamu and Nganje, 2010), Contamination 

Security Index (CSI: Pejman et al., 2015), Probability of Toxity (MERMQ: Pejman et 
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al., 2015), Degree of Contamination (Cdeg: Hakanson, 1980), Potential Ecological Risk 

(RI: Hakanson, 1980), Modified Degree of Contamination (mCd: Abrahim and Parker, 

2008). These are well documented in the literature (e.g. Kowalska et al., 2018). 

 

Evaluation of geochemical background and contamination indices 

The selection and identification of proper reference values for uncontaminated soil is a 

key task which results in precisely assessing soil contamination by heavy metals, because 

overall quantitative assessment methods are dependent on reference values of background 

concentrations (Desaules, 2012). There are many background definitions and related 

terms in literature. These definitions and applications of background values in 

environmental geochemistry are discussed and well documented in the literature (e.g., 

Reimann et al., 2005; Wu et al., 2014). The following important points can be briefly 

given: 

• No specific global and regional background levels of heavy metals can be 

described. Because natural and anthropogenic effects are different in different 

regions. 

• The levels of background concentrations are based on the area and its scale. 

• Background value is a range and not absolute value due to heterogeneity of the 

environment. 

• Natural background may vary in earth crust due to human activities. 

 

Selection of proper geochemical background (GB) is significant in the evaluation of 

heavy metal contamination (Varol, 2011). Application of various GB provides a more 

precise investigation of contamination index values. This may be based on the 

possibility of the contamination of individual sites (Karim et al., 2015). 

Two types of GB were classified as reference and local (natural) (Kowalska et al., 

2016). The average content of heavy metals can be changed due to local heterogeneity 

and soil type which may be described with the reference geochemical background 

(RGB). Local geochemical background (LGB) is the occurrence of natural process 

which is not affected by human activity (Reimann et al., 2005). 

RGBs do not contain natural variability (Xu et al., 2015). Use of RGB is not always 

possible to recognise natural and anthropogenic effects (Kowalska et al., 2016). 

However, RGB provides global or regional models of heavy metal contamination 

(Karim et al., 2015). Calculation of contamination indices needs RGB for many 

purposes. 

LGB contains heavy metal content in rocks and the average content of samples and 

considers a definite level of human activity (Karim et al., 2015). LGB application is 

recommended for individual sites under the effect of natural activities and 

anthropogenic impact (Kierczak et al., 2016). However, LGB may change significantly 

through lithogenic processes, and its level should be evaluated within geologically 

homogeneous area (Kowalska et al., 2018). Consequently, literature argued that RGB 

and LGB values can be used to have complete knowledge (Reimann and de Caritat, 

2017; Kowalska et al., 2016). 

Many literature research studies have demonstrated that selection of contamination 

indices are used for different purposes including contamination degree, heavy metal 

source, potential risk of heavy metal accumulation, ecological risk, the scale of total 

concentration (e.g. Dung et al., 2013; Guan et al., 2014; Baran et al., 2018). These 
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criteria are used in the calculation of contamination indices which are based on GB 

values (e.g. Igeo and EF), data (e.g. CF), and heavy metal content in the soil (e.g. ExF). 

Although there are clear similarities between contamination indices, they differ from 

each other due to the effects of several factors. 

Igeo and PI are the most accurate and widely used to assess the level of 

contamination (Begum et al., 2014; Karim et al., 2015; Sayadi et al., 2015). The indices 

provide to compare previous and present contamination and to have correct scale. 

EF makes difference between contamination sources of anthropogenic activities and 

natural processes (Kowalska et al., 2016). EF identifies low concentrations of heavy 

element variability (Karim et al., 2015). RGB values have frequently been used in the 

calculation of EF like Igeo and PI. Heavy metal concentration levels of the sample and 

reference values are mostly described by concentration variability. 

The calculation of CF does not need GB (Li et al., 2016). However, CF distinguishes 

proportion difference between single heavy metal contamination and previous industrial 

reference values. CF ignores the variability of natural activities (Varol, 2011). 

PIsum and PLI are used for overall soil contamination assessment. These indices are 

similar to PIavg, PIvector and PIN, which are applied to similar purposes. Their uses are 

easy and simple. They exhibit reasonable levels of heavy metal contamination (Inengite, 

2015). The main weakness of them has individual scale. 

Consequently, appropriate selection of contamination indices is based on the degree 

of contamination, purposes of use, soil type (e.g., farmland, forest, and urban site). 

Understanding knowledge of contamination index is a basic key task for environmental 

management, risk of environmental exposure, agricultural practises, ecosystem 

protection, identification of natural and anthropogenic sources. 

 

Multivariate statistical analysis methods 

Multivariate statistical analysis is often used for identifying sources of heavy metal 

contamination (Mostert et al., 2010). The Methods consist of principal component 

analysis (PCA), cluster analysis (CA), Pearson correlation analysis, factor analysis 

(FA), multiple linear regressions (MLR). PCA is the most frequently used multivariate 

statistical analysis method to reduce data dimension. This technique derives to 

determine the variance in the data with a small number of independent variables 

referred to principal components (Boruwka et al., 2005). The relationship between 

metal fractions and physical chemical properties is determined by PCA. Varimax 

rotation is applied to minimise the number of variables with a high loading on each 

component and operates the assessment of results (Mico et al., 2006). In another way, 

an orthogonal transformation technique is used to obtain the first principal component 

showing for the highest variance in the observed data. An eigenvalue decomposition in 

matrix is constructed with the highest eigenvalue which is the principal component of 

the data (Hou et al., 2017). Consequently, it is important to adequately treat and 

organise the data for multivariate statistical analysis. Appropriate transformation is 

necessary. 

CA is the second most used multivariate statistical analysis method in the literature 

(Hou et al., 2017). Variables of the data set are divided into groups of similar features. 

CA algorithms minimise and maximise inter group variability. CA is used to confirm 

PCA results for soil contamination by heavy metals. 

Other less commonly used methods are Pearson correlation, FA and MLR. Pearson 

Correlation analysis makes linear correlation between two variables. It corresponds a 
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correlation coefficient ranging from -1 to 1. -1 represents perfect negative linear 

correlation, 0 refers to no correlation and 1 indicates perfect positive correlation. 

Pearson correlation is useful for PCA and CA. Hou et al. (2017) pointed out that 

Pearson correlation is not a multivariate statistical analysis technique. Because it 

explains only single pairs of variables at a time. FA proposes to reduce data set 

dimension like PCA, but mathematical methods of them are different. FA uses a 

discrete model to provide n variables within latent variables (n > m) whereas PCA does 

not account the model (Jaliffe, 2002). FA is often used in human behaviour study 

related to the environment (Hou et al., 2017). However, FA has rarely been used for soil 

contamination of heavy metal (Romic and Romic, 2003). MLR has seldom been used 

for spatial distribution of heavy metals in soil. MLR combined PCA was used by Ali et 

al. (2016) for quantifying the origin of heavy metals. 

In conclusion, combined geographic information system (GIS) and multivariate 

analysis have been recently used by increasing number of studies for the assessment 

of spatial distribution of heavy metals to quantify soil quality in regional scale (e.g., 

Huang et al., 2015; Lin et al., 2016; Moore et al., 2016; and Zhou et al., 2016). GIS is 

a compilation of computer hardware, software, spatial and non-spatial data, and users 

designed to efficiently capture, store update, manipulate, analyse, and display all 

forms of geographically referenced information. GIS software is interoperable, 

supporting many data formats used in the infrastructure life cycle. Its technology 

provides a central location to conduct spatial analysis, over by data, and integrate 

other applications or systems. The recent development of GIS is to capture digital data 

in the field and provide more efficient transfer from field to office. GIS technology is 

changing fast and moving from mainframe computer to workstation and to desktop-

based PC systems. GIS is driven by jurisdictional, purpose or application 

requirements. Most phases of infrastructure life cycle are commonly affected and 

enhanced by the enrolments of GIS. 

 

Spatial interpolation methods 

Interpolation is the process of estimating the values of interest variables at 

unsampled areas. Spatial interpolation methods differ from classic modelling 

approaches since spatial methods provide knowledge about the geographic position of 

the sample point. In the spatial interpolation sampling points closer to each other, 

exhibit good correlations and more similarities than the points further away. In this 

study from literature review (e.g. Li and Heap, 2014; Xi et al., 2011; Hou et al., 2017) 

the most frequently used spatial interpolation methods, inverse distance weighting and 

ordinary kriging (OK) were reviewed. 

 

Inverse distance weighting (IDW) 

IDW is based on a linear combination of data set. The main advantages of IDW are 

fast and easy use, directly interpolation (Table 6). Thus, the method most widely used 

for environmental and mining studies. The important weakness of IDW is that it does 

not account a particular model of spatial correlation for the variables being interest. The 

interpolating equation is given as follows (Eq. 8): 

 

 Zxy =  (Eq.8) 
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where Zxy is the estimated value at an interpolated point, zi is the control value for the ith 

sample point, n is the total number of observed points used in interpolation, dxyi is the 

distance between Zxy and Zi, and β is on exponent described by the user. As the distance 

increases the weight decreases and weighting power incorporates the weight decreases 

while the distance increases. The accuracy of IDW may be improved by selecting the 

optimal neighbouring points and exponent value to generate optimum arrangement 

between observed data and the prediction. Many soil quality survey studies revealed 

that integrated IDW with GIS and multivariate statistical analysis have been used in 

several regions quantifying soil contamination of heavy metals (e.g. Haung et al., 2015; 

Lee et al., 2006 and Zhang, 2006). 

Non-geostatistical rarely used other spatial interpolation methods are nearest 

neighbours, triangular irregular network related interpolations, natural neighbours, 

regression models, trend surface analysis, thin plate splines, regression tree, local 

polynomial, and radial basis functions. 

 

Kriging 

Kriging is the geostatistical method that is the most widely used among spatial 

interpolation methods for spatial distribution in soil. Kriging is produced from 

regionalised variable theory and dependent on stochastic spatial variation model. 

Confidence intervals for the values of variables at unsampled locations are estimated by 

kriging. A linear combination of the observed values with weights gives the kriging 

predictor. There are many types of kriging that include simple kriging (SK), ordinary 

kriging (OK), factorial kriging, dual kriging, indicator kriging (IK), disjunctive kriging, 

model-based kriging. These refer to univariate kriging type, whereas universal kriging 

(UK), SK with varying local means, kriging with external drift, simple cokriging (SCK), 

OK, standardised ordinary cokriging, principal component kriging, collocated cokriging, 

kriging with strata, multivariate factorial kriging, IK with an external drift, indicator 

cokriging and probability kriging are classified as multivariate kriging types (Li and 

Heap, 2014). 

Kriging equation is given as follows (Eq. 9): 

 

  (Eq.9) 

 

where Z(B) is the estimated area, λi is weight and Z(xi) is sample value. Ordinary kriging 

(OK) is the most frequently applied technique among the kriging types for environmental, 

geological and mining studies. Advantages and weakness features of OK is given in Table 

6. The main characteristics of OK can be presented at the following points: 

• OK is the best linear unbiased estimator. 

• OK estimates unsampled locations in studied site 

• OK measures estimation errors and uncertainty 

• OK minimise the variance of the data. Its variance is based on data values. The 

error variance is poorly correlated with actual estimation error. Thus, kriging 

variance may not be used alone as a measure of local uncertainty. 

• OK provides spatial structure 

• OK requires variogram construction before operating spatial interpolation 

process. Thus, OK is significantly affected by variogram parameters such as 

nugget effect, sill, range, variogram model or shape, search radius, number of 
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neighbouring measurements. Sufficient data and appropriate distribution of 

data are necessary for variogram building. 

• The biggest weakness of OK has smoothing effects. Interpolated surface is 

smooth which can cause low values to be overestimated and high values to be 

underestimated. This most probably resulted in the high contamination risk 

area. Underestimated and low risk are clean area overestimated. 

• Error assessment of OK is based on variogram structure, distribution of data 

points and size of interpolated blocks. 

• If data are sufficient and appropriate distribution to compute variogram, OK 

will provide a well interpolator for sparse data. 

• OK does not require knowledge of the mean over the region of interest and 

operates under simple stationarity assumptions. 

• OK is a robust estimator due to only requiring local stationarity. 

 

Many case studies demonstrated that combined multivariate statistical analysis with 

kriging analysis can be a reliable and useful tool to determine spatial distribution and 

source of heavy metals, to quantify soil quality (Maas et al., 2010; Lu et al., 2012; Shao 

et al., 2014; Cai et al., 2015; Gabarron et al., 2017). 

Geostatistical simulations 

Simulation is defined as imitations of conditions. Simulation generates an equally 

probable realization representing spatial distribution of heavy metals and measuring of 

uncertainty of the area being studied. Exploratory statistics such as mean, median, 

variance, coefficient of variation, standard deviation, skewness, and kurtosis; histogram; 

the variogram (spatial dispersion variance) of the original data information are 

reproduced by simulations on real scale. Simulated realizations are constructed on a fine 

grid. Simulation characteristics of soil contamination play a key role in sampling 

strategy and designing, planning, decision making, implementation risk and scheduling 

in site assessments. Significant parameters can be derived from the distribution of local 

uncertainty such as exploratory statistics and probability of exceeding value or threshold 

limit. Thus, a simulation process is a significantly more completed model than the 

single estimated block or point model. 

Simulations provide a variety of purposes including study of element concentration 

continuity, optimising sampling for advanced investigation, assessment of soil 

contamination estimation methods, site (environmental) planning, risk evaluation (e.g. 

financial) and any integration of the aims given here. 

There are two types of geostatistical or stochastic simulations, unconditional and 

conditional. Unconditional simulation is simply an application of the general Monte 

Carlo Technique that simulate values and are generated with a particular covariance 

function and variogram. Several simulation techniques exist for practitioners. Four 

methods are common in use; they are sequential Gaussian simulation (SGS), simulated 

annealing, and simulation by turning bands and lower-upper decomposition. The first 

three methods can generally be conditional and lower-upper decomposition is often 

used for unconditional (Webster and Oliver, 2007). 

SGS is the most widely used technique in environmental studies for site assessment 

particularly to quantify risk and quality of soil (Goovaerts, 2001; Qu et al., 2013; Zhang 

et al., 2017; Ersoy and Yünsel, 2018). Sequential indicator simulation, direct sequential 
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simulation, and sequential Gaussian cosimulation or joint simulation are an extension of 

SGS simulation models of several continuous variables and based on SGS algorithms. A 

growing number of many environmental researchers have also used these applications 

for soil contamination by heavy metals (Huang et al., 2015; Franco et al., 2006; Ersoy 

and Yünsel, 2019). Because applications of SGS are simple, flexible, and fast; thus, 

SGS is briefly reviewed here (Table 6). SGS algorithm can be found in the literature in 

details (Journel and Alabert, 1989; Deutsch and Journel, 1998). 

 
Table 6. Main characteristics of IDW, OK and SGS 

Method 
Inverse distance 

weighted (IDW) 
Ordinary kriging (OK) Sequential Gaussian simulation (SGS) 

A
d

v
a

n
ta

g
e
s 

• Fast and easy use 

• Direct interpolation 

• Widely used 

• Best linear unbiased estimator 

• Measures estimation errors/uncertainty 

• Estimates unsampled locations 

• Provide spatial structure 

• Robust estimator 

• Local stationary 

• Knowledge mean of the region studied 

• Most widely used 

• Good variogram, good estimation 

• No smoothing effect 

• Quantify uncertainty 

• Probabilistic map present risk assessment 

• Reproduce statistics, variogram, histogram and 

contour plots 

• Maps show contaminated and uncontaminated 

areas 

• Assessment of spatial structure 

• Evaluation of sampling strategy and design 

• Most frequently used 

W
e
a

k
n

e
ss

 

• Does not measure 

errors 

• Smoothing effect 

• Performance based on 

size of search area 

• Select of weighting 

parameters 

• Neighbouring points 

• Smooth effects on results 

• Bad variogram, bad estimation 

• Minimise variance lower than data 

variance 

• Performance based on variogram 

• Quality of data 

• Size of interpolated blocks 

• Great tutorial, expertness and experience 

necessary 

• Long-time computerising 

• More trial and error 

• Reproductions and number of realisations 

• Results depend on sampling process 

• Data organisation and treatment 

• Neighbouring and search parameters 

• Block characteristics 

• Variogram and its parameters 

 

 

A schematic diagram (Fig. 2) exhibits the basic and summary steps involved in the 

process of SGS. The main advantages of SGS include: 

• SGS does not have smoothing effects unlike traditional interpolation methods 

such as kriging, IDW. SGS ensures to evaluate exactly the high and small values 

in the data. 

• SGS generates maps representing an equally probable spatial distribution and to 

quantify uncertainty of heavy metals for site exploration. 

• SGS produces maps showing contaminated areas and uncontaminated areas 

across the site. 

• SGS is a probabilistic approach that provides probabilistic maps; exhibits a 

different description of regions into safe and hazardous. 

• SGS reproduce descriptive statistics, histogram, variogram and contour plots of 

spatial characteristics. These are correlated with the same spatial characteristics 

of original data. This refers to validation tests of SGS. 

 

In conclusion, literature studies demonstrated that risk and quality assessment in 

decision making should not be based on only kriging estimates. SGS should be operated 

in uncertainly assessment especially soil contamination with heavy metals. Because SGS 

ensures local variations in values of a contaminant particularly including design and 

strategy, estimation procedures, site planning and any risk assessment (e.g. financial). 
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Figure 2. Schematic diagram showing the basic steps in the process of SGS 

Factors affecting performance of investigation methods (estimation and 

simulation) 

Various factors affect the performance of estimation and simulation methods (Isaaks 

and Srivastava, 1989; Burrough and Mcdonell, 1998; Zimmerman et al., 1999; 

Schloeder et al., 2001; Verly, 2005; Wang et al., 2005; Wu et al., 2006; Stahl et al., 

2006; Hengl, 2007; Li and Heap, 2011; Xie et al., 2011; Rossi and Deutsch, 2014). 

These factors can be classified into four groups including sampling process, data 

organisation and treatment, variogram modelling and model variogram parameters, and 

cross validation. The factors were usually encountered in the literature. 

 

Sampling process 

The quality of soil contamination estimates is dependent on the available data based 

on the quality of sampling procedures. If the samples are not representative to form 

sample bias which will directly affect the final contamination estimate the result will not 

be reliable and accurate. 

The estimate performance is generally measured using errors (Sinclair and 

Blackwell, 2002; Li and Heap, 2011, 2014; Rossi and Deutsch, 2014). There are no 

perfect measurements (Neufeld, 2005). The relatively large mass of a sample is reduced 
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to a small subsample from which a few grams are taken to make chemical analysis. 

There must be a difference between subsample content, the original sample and the 

analysed (assay) sample. The difference refers to sample error. Rossi and Deutsch 

(2014) presented that there are two forms of error. One is present due to the intrinsic 

properties and the material being sampled. The other comes from inappropriate 

sampling procedures and preparation. In the literature, there are several errors in 

measurement that are most commonly used including fundamental error, increment 

delimitation error, increment extraction error, mean or average variance, coefficient of 

variation, mean absolute error, mean squared error, root mean squared error, relative 

mean absolute error and relative root mean square error. Fundamental error results from 

constitution heterogeneity of the material being sampled. This error is random with a 

mean of zero. However, delamination and exaction errors are mean of non-zero, the 

errors resulted from improper sampling, and thus bias is related to the sampling 

procedure. 

A variety of issues related to sampling process need to be considered sample 

collection, handling, preparation, and analysis. However, in this review sampling 

density or size and sampling design are focused factors especially in environmental 

studies because these factors were met in previous literature. 

Literature studies have usually argued that when the sample density increased, the 

errors decreased. But as this reached a threshold number of sample density, collected 

addition of further samples does not improve the performance of estimation methods (Li 

and Heap, 2008, 2011). However, size of study site plays a significant role on sampling 

density. Different researchers studied different scales for small survey area or for larger 

survey area. When sample density is big enough, most estimation methods generate 

similar results (Burrough and Mcdonell, 1998). Estimation methods produce better 

results as the sample density increases (Isaak and Srivastava, 1989; Stahl et al., 2006). 

The effects of sample density on the errors are based on the type of estimation methods 

(Hengl, 2007; Li et al., 2014; Li and Heap, 2011, 2014). In practical applications, after a 

number of threshold samples further increase in sample size may not significantly 

contribute to the accuracy of the estimations and simulations. If sample size does not 

reach the threshold, it will still be a critical factor. Thus, the impacts of the sample 

density are controlled by data organisation and treatment as discussed below. 

 

Data organization and treatment 

Data is a key factor to influence on the performance of estimation and simulation 

methods. Major factors related to data quality are summarised here including 

exploratory data analysis, outliers and declustering. 

 

Exploratory data analysis 

The descriptive tabulated and graphical forms have been used to characterise data nature 

and quality since about 1940. The descriptive summary statistics include mod, median, 

mean, standard deviation, variance, and standard error of mean, coefficient of variation, 

skewness, and kurtosis. Histogram, probability, and quantile-quantile plots are graphical 

applications to assess data distribution. These statistical tools are very useful to construct 

data quality for several reasons, including understanding of the data and soil contamination, 

to summarise information, to provide inferences, estimations, and simulations. 
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Normal distribution of the input data can significantly affect estimation and 

simulation accuracy. If the data are not normally distributed, lognormal transformation 

is frequently used e.g., lognormal kriging. Other transformation methods may also be 

applied to obtain normal distribution, resulting in Gaussian kriging and multi-Gaussian 

kriging (Cressie, 1993). SGS requires normal sore transformation of the original data 

with zero mean and unit variance. 

Histogram is the most basic statistical tool used in exploratory data analysis. Three 

factors should be considered: arithmetic or logarithmic scaling, arithmetic scaling is 

appropriate, whereas logarithmic scale clearly represents highly skewed data 

distribution; range of data; and number of boxes. The mean value is influenced by 

outliers; the median is affected by missing data. If coefficient of variation is higher than 

2 the distribution should be combined with high and low values together. 

All data values are given on the probability plot. Different statistical populations can 

be interpreted. Probability plot is also useful to determine data distribution, straight line 

on arithmetic scale presents a normal distribution; a straight line on logarithmic scale 

corresponds a lognormal distribution. 

 

Outliers and declustering 

Outliers are extreme values (a small number of very low or very high values) 

inconsistent with the majority of data values; outliers have significant influence on 

descriptive statistics and measures of spatial continuity. The extreme values should be 

removed from the data. There are different ways to identify the outliers: many 

geostatistical techniques require a transformation of the data that reduce the effect of 

outliers. Probability plots are useful to check extreme values. Another method is cutting 

(capping) for identification of outliers. Cutting values higher than cutting threshold 

(outlier threshold) can regulate to the outlier threshold itself. Outliers can come 

dramatically to increase the nugget variance of experimental variogram which would 

mislead us. If outliers are suspected, they should be removed by the identifying 

technique as explained above. 

It is difficult in some situations that whether those values are outliers or not. In such 

cases, called outliers should be retained. Dowd (1984) and Genton (1998) recommended 

using the robust variogram estimators which reduce the effects of outliers. 

Data are rarely collected randomly. Soil data commonly have relatively high 

concentration in source zone, thus histogram of raw concentrations is biased. The effect 

of clustering should be removed to obtain unbiased histogram and summary statistics. 

Declustering techniques are applied to provide the true form of the spatial distribution 

and descriptive statistics. Three declustering methods are most commonly used in 

literature: cell declustering (Journel, 1983), the nearest-neighbour declustering and 

polygonal declustering (Isaak and Srivastava, 1989). These techniques are well 

documented in the related references. 

 

Variogram 

Estimation (e.g. kriging) and simulation (e.g. SGS) are based on experimental 

variogram modelling. The variogram parameters consist of lag distance, nugget effect, 

variance, sill, range, and fitting model. Their definitions can be found in most 

geostatistical textbooks and software (e.g., Chiles and Delfiner, 2012; Geovariances, 

2014; GSLIB: Deutch and Journel, 1998). Oliver and Webster (2014) showed that 
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reliability of the experimental variogram is affected by several factors including sample 

size, lag interval and bin width, marginal distribution of the data, anisotropy, and trend. 

Accuracy of the experimental variogram is based on the size of the sample. Generally, 

more data represent more reliability. Webster and Oliver (2014) pointed out that 

variograms computed from less than 100 data are unreliable. When the sampling interval 

decreases, the size of the sample increases. Sampling interval provides the applicability of 

the experimental variogram. If the sampling interval is wider than the correlation range of 

the study, pure nugget effect will occur in the experimental variogram. This result in 

estimation is not reliable. Grid sampling is very appropriate in the field to produce well 

estimation maps and simulation realizations. However, if the grids are coarse, the process 

may lose the short-range variation significant for the variogram. The solution is that extra 

samples in the grid should be collected. 

Choosing lag distance and bin width significantly affects judgement of the 

experimental variogram. If lag distance and bin width is short, there will be many 

variogram models which subject to wide error. In contrast, there will be few models 

with large lag distance and bin width. In practise, the experimental values should be 

selected plausibly. 

Another important factor influencing variogram is data distribution. Variances 

incredibly increased as the data positively skewed. Histograms, box-plots and 

descriptive statistics should be computed to determine the data distribution. Many soil 

data are strongly and positively skewed in the literature, skewness value of data is 

greater than 1, and the data will be transformed to logarithms. If the skewness value is 

between 0.5 and 1, transformation to square roots will make normal distribution. 

Outliers cause seriously skewed distribution of the data as discussed earlier. 

In many cases, data variation is not isotropic, displays anisotropy evidence. 

Practitioners may ignore or not to detect anisotropy make model improperly. Thus, 

biased estimations or simulations may emerge. Both directional and omnidirectional 

experimental variograms of variable/variables should be analysed separately. If the 

directional variogram reveals anisotropy, we should narrow direction angle to state its 

expression and to provide the direction of maximum continuity. 

Trend can be defined as gradual variation in spatial data. In practise, it is difficult to 

decide on the trend. Detection of global trend is done by making map from the data with 

proper software in an easy manner. The map presents gradual continuous variation. 

Experimental variogram shows increasing changes more steeply when the lag distance 

increases. We can confirm the presence of trends mapping residuals. Thus, the main 

direction of the trend can be identified. The experimental variogram is constructed in 

the direction perpendicular to the principal direct of the trend. 

In environmental studies, environmental authorities require predictions of 

contaminants in blocks that are appropriate size for remediation. Block size is significant 

for farmer applications of agricultural chemicals such as lime, fertilisers, and pesticides. 

Oliver and Webster (2014) pointed out that block size is typically 24 m in Europe. In 

practise, block kriging is more suitable than point estimates (punctual kriging) because 

block kriging variance is typically much less than punctual kriging variance. 

Mapping software uses a moving window based on a chosen size of neighbourhood 

block in a study area. Although there are no rules to describe the estimation 

neighbourhood, the following guidance is given by Oliver and Webster (2014): 

• If there is good (dense) data, the variogram will have a negligible nugget 

variance. The radius of the neighbourhood can be chosen close to the range. 
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• If a variogram has a large nugget variance, the radius of the neighbourhood can 

be chosen higher than the range. 

• Minimum and maximum number of neighbourhood nearest data to the target is 

usually recommended 7 and 25, respectively. 

• If the data are sparse and unevenly distributed, the neighbourhood is divided 

into octants. Each octant has at least two data points. 

• If the data are irregularly scattered, the neighbourhood will be moved to predict 

a field of values for mapping. 

 

Cross validation for kriging 

Cross validation can be performed to cross-check the candidate models and data by 

statistical and graphical results. Mean error (ME), mean standardised squared error 

(MSSE) and mean squared deviation ratio (MSDR- the mean of squared errors (MSE) 

divided by the referring Kriging variances) is calculated. Perfectly the mean error 

should be zero, thus Kriging results are unbiased, even poorly produced model. The 

MSE should be at minimum level, and is composed of good statistics; however, the 

MSE will not determine a true model. The MSDR is the most testing criteria, it should 

be 1. If the MSDR is close to 1, this kriging model should be chosen. 

Verification of graphical results are the base map, scatter diagram of observed data 

versus estimated value, histogram of the standardised estimation errors (SEE) and scatter 

diagram of standardised estimation error versus estimated value. Outliers are depicted on 

the base map. Scatter plots of observed data versus estimated value show conditional bias 

and variability. This indicates that true and estimated data should match exactly with each 

other. Nearly all frequencies of SEE should be equal zero or around zero. Scattered points 

must be distributed around zero within acceptable limits in graph of estimated value 

versus SEE. More information related to cross validation of kriging results may be 

obtained from literature (e.g. Ersoy et al., 2004; Webster and Oliver, 2007). 

 

Cross validation for simulation 

Verification of the simulation process can be carried out using a number of tests 

including summary statistics, histograms, variograms and contour maps. Summary 

statistics of the simulated data are compared to summary statistics of the raw data. The 

comparison should be reasonable in good agreement. The histograms of the observed 

data should be quite similar to the histograms of the simulated realizations. It should be 

noted that each histogram from produced realizations (e.g., hundred simulated 

realizations) must be randomly chosen. Simulated data or reproduction variograms are 

compared to the variograms of the observed data. The comparison should be a good 

reproduction of spatial variability. The contoured map of the simulated mean data and 

countered observed data should be presented. The simulation mean values should 

plausibly reproduce the intrinsic charter of the observed data. More details for 

validation of simulation results can be found in Ersoy and Yünsel (2019). 

Conclusions 

The main conclusions of the study are the following points: 

• Adequate background research and information identifying sources and types 

of contaminants should be gathered in preliminary stage for site investigation. 
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• Adequate and good quality data are essential for the assessment of soil 

contamination by heavy metals. 

• Good quality data are controlled by data organisation and treatment such as 

exploratory data, outlier analysis and declustering. 

• There are wide ranges of variations in regulations and soil threshold limits (or 

heavy metal concentration guideline in soil) for different countries due to 

different politics, culture, and objectives. Briefly, the most regulations are still 

dependent on the total concentrations of heavy metals in soil. 

• Literature studies demonstrated that there are some similarities and differences 

between contamination indices. Strengths and limitations of the indices have 

been compared. Igeo and EF are most commonly and universally applied for a 

range of contamination. The selection of appropriate index is a key task to 

understand the degree of contamination, the use of soil, and the aims of 

contamination indices characteristics. Geochemical background plays a 

significant role which is based on specific site and scale of contamination 

assessment. The contamination indices combined with multivariate statistical 

analysis provide discrimination between natural and anthropogenic heavy 

metals in soils. 

• Multivariate statistical analysis is a better tool than classical univariate 

statistics identifying sources of heavy metal contamination. Literature research 

revealed that an integration of multivariate statistical analysis, GIS and 

geostatistical methods can be accurate and reliable to characterise spatial 

distribution of heavy metals and to determine their origin. 

• Simulation and estimation have different purposes. Simulation provides local 

variations of a variable examined. Estimation has effect on environmental 

planning to identify contaminants on scale that physical dispersion can be 

achieved. 

• In theory, simulation is superior to OK, because of its conditional expectation, 

whereas OK is conditionally biased. In general, performance of kriging 

techniques is better than interpolation methods (e.g., IDW) or geostatistical 

methods. However, conventional interpolation methods and kriging techniques 

have smoothing effects, whereby small values are typically overestimated, 

while high values are underestimated. Kriging estimates that local error 

variance is at a minimum level, less than original data variance, thus generally 

contains bias as a measure of reliability. This has a negative effect on soil 

contamination or environmental risk assessment. The solution is geostatistical 

simulation that overcomes kriging and other interpolation methods. SGS is 

most commonly used for spatial distribution, uncertainty, and risk assessment 

of heavy metals in soil contamination. The literature review revealed that risk 

assessment in decision making should not be dependent only kriging estimates. 

SGS should be carried out in uncertainty assessment, typically heavy elements 

contamination in soil. Because simulation process results in local variations in 

values of heavy elements particularly including sampling design and strategy, 

estimation procedures, site planning and risk assessment (especially financial). 

• Performances of geostatistical estimation and simulation are affected by many 

factors including sampling process, data organisation and treatment, variogram 

and its parameters; block, search area and neighbourhood characteristics. These 

factors have been critically and comparatively reviewed. 
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• Multivariate simulation should be applied for soil contamination to create maps 

assessing uncertainty and representing an equally probable spatial distribution 

of the heavy metals in soil for future study. These maps will show 

contaminated and uncontaminated areas in the study site for future studies. 

•  It is also recommended for future research studies that sequential co-

simulation integrated with local singularity analysis is effective, powerful, and 

useful tool to generate maps for risk analysis and to quantify uncertainty of soil 

contamination by heavy metals. Uncertainty quantification of soil 

contamination is a key issue for decision making in environmental analyses. 
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