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Abstract. Using aquatic plants to control nitrogen (N) and phosphorus (P) loads and restore eutrophic lakes 

has been put into practice since the 1980s. However, existing studies can hardly illustrate the law of N&P 

flow in water, aquatic plants and sediment during the growth of plants. In this study, three typical aquatic 

plants, two emerged plants and one submerged plant from Lake Gehu, China, were chosen to study the rule 

of N&P flow. The N&P contents and some related parameters in the water, sediment and plant samples 

were measured and the correlations between them were analyzed. The results show that the flow of N&P 

is generally controlled by the growth of plants, and N can flow directly between plants and sediment while 

P transfer is more significant in water and sediment. In emerged plants, 70-75% total nitrogen (TN) and 

over 50% total phosphorus (TP) is concentrated in leaves at early and medium stages of growth, and at the 

decline stage N&P transfer to roots. Results also show that reaping plants around August and purifying 

sediment after plants decay can make nutrient removal efficiency. 
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Introduction 

Eutrophication has been a worldwide water pollution problem for decades. In the lower 

reaches of the Yangtze River basin, China, eutrophication has been affecting people’s 

daily life. For example, algal bloom occured in Lake Taihu around the end of May and 

lasted for 2 months in 2007. It affected the nearby city Wuxi where more than 2 million 

people were short of drinking water (Guo, 2007). From 2011 to 2013, cyanobacteria have 

comprised over 99% of total phytoplankton biomass in Lake Chaohu during the whole 

summer which affected water supply for 7.6 million people (Zhang et al., 2015). Although 

the Chinese government has taken actions to restore the aquatic ecosystem, the annual 

surveys of water quality of lakes, from 2006 to 2016, show a high proportion of 

eutrophicated lakes at around 78%. In short, eutrophication is still a serious problem in 

China. 

For a long time, phosphorus (P) has been considered as the elemental factor to 

stimulate excess growth of phytoplankton and further trigger algae bloom (Hilton et al., 

2006). However, some experiment results show that only controlling P loads does not 

have a significant effect on eutrophic status. Meanwhile, nitrogen (N) was discovered as 

another essential factor that contributes to eutrophication process (Dodds, 2007). Also, it 
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is now commonly accepted that reducing both N&P loads can reduce water nutrient level 

(Conley et al., 2009). 

Using aquatic plants to control N&P loads and restore eutrophic lakes is widely 

recognized in ecology (Qiu et al., 2001; Xiao et al., 2009) since aquatic plants can absorb 

and assimilate nutrients, and also stimulate the microbial action of the rhizosphere (Hans, 

1997). There are many studies on aquatic plants in eutrophic environment. Periphyton 

and phytoplankton together with macrophyte are indicators of a eutrophic environment 

(Hilton et al., 2006). Furthermore, the coexistence of snails and submerged plants can 

decrease concentrations of N&P in water (Mo et al., 2017), but various species of plants 

have different abilities of removing excess nutrients (Wen and Recknagel, 2002). 

However, aquatic plants growing environment is complex, it also contains water and 

sediment, which both have impact on nutrient loads. For example, physical and chemical 

properties of water can make enormous difference, like calcium phosphate (Ca-P) 

dissolved very easily at low pH while aluminium phosphate (Al-P) dissolved more easily 

at high pH (Smil, 2000); ferric ion (Fe3+) will reduce to ferrous ion (Fe2+) when water is 

anaerobic which can cause ferric phosphate (Fe-P) to dissolve (Liu et al., 2002). 

Hydraulic dynamics is also a significant factor of nutrient transfer, like the retention time 

of water (O’Hare et al., 2018) and flow velocity (Hilton et al., 2006). Besides, adsorption 

and desorption of sediment have essential effects in transferring N&P (Wang et al., 2018; 

Meghdadi, 2018) since mineral composition and some other sediment characteristics play 

key roles in this process (Smil, 2000). As indicated above, existing studies make good 

explanations on factors affecting N&P transferring, but lack showing the process of N&P 

flow in the whole aquatic environment system. 

Although lake ecological restoration is carried out by cultivating aquatic plants, 

surveys revealed that the lake eutrophication in China hadn’t been alleviated significantly 

in recent years (China water resources bulletin 2010-2016). The result does not meet 

expectations due to the lack of scientific management, which further indicates the 

importance of learning the rule of N&P flowing between water, aquatic plants and 

sediment. This will therefore serve as a guide to form a rational and systematic 

management of aquatic plants for effective restoration of eutrophic lakes. Furthermore, 

diversity of aquatic plants varies a lot with time and space (Rooney et al., 2011; Bolpagni 

et al., 2018). Such perspective can be reflected in Lake Gehu. From 1970 to 2007, the 

total aquatic plants coverage had a sharp decline (Xu et al., 2013). Since 2012, several 

types of emerged plants were cultivated in shallow areas (Wu et al., 2017). This means 

surveys of aquatic plants species should be conducted before learning the rule of N&P 

flowing in water, aquatic plants and sediment. 

Hence, the present work has been undertaken with the following objectives: (1) 

Figuring out the changing processes of N&P concentration in water, aquatic plants and 

sediment during aquatic plants growth, respectively. (2) Learning the rule of N&P 

flowing in water-aquatic plants-sediment within a life cycle of aquatic plants. (3) Giving 

suggestions on using aquatic plants to restore eutrophic lakes. 

Materials and Methods 

Study area 

This study is based on the background of Lake Gehu, China. The coordinates of the 

lake are 119°44’E-119°52’E and 31°28’N-31°44’N (Fig. 1). Lake Gehu, the main source 

of drinking water for nearby residents, is an important shallow lake in the south of Lake 
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Taihu in Jiangsu province, China (Fig. 1a), which belongs to the Taihu basin. It is a 

typical shallow aquatic vegetation lake. The water storage area is 144.1 km2 and the 

average water depth is 1.31 m. The lake has a moderate and humid climate and also has 

sufficient sunlight. And the annual mean temperature is around 16.7℃. It plays an 

essential role in protecting the water quality of Lake Taihu, forming the most important 

natural defense line for Lake Taihu (Xu et al., 2013). Around 16 rivers enter into it from 

west, while 15 others divert from south-east (Fig. 1b). Lake Gehu has been eutrophic for 

over a decade with a strong adverse influence on local freshwater supply, and aquaculture. 

Since 2009, the local government carried out many measures to restore Lake Gehu 

including aquatic plant restoration (Wu et al., 2017). However, the algal bloom still occurs 

in high frequency, especially in summer. 

 

Figure 1. Location (a) and River system (b) of Lake Gehu 

 

 

Experiment materials 

Materials for experiments and relative value settings are based on the results of a field 

investigation, which are shown in the results section. 

Aquatic plants: Two emerged plants Phragmites australis (Ph.a.), Zizania latifolia 

(Z.l.), and one submerged plant Hydrilla verticillata (H.v.) were collected at the same 

time from Lake Gehu, in the early of April when plants were at their initial stage of 

growth, for indoor cultivating experiment particularly. 

Water: NH4Cl and KH2PO4 were used to formulate experimental water. Initial N&P 

concentration were set at 2.0 mg/L and 0.2 mg/L, respectively. 

Sediment: Experimental sediments were from areas around aquatic plants in Lake 

Gehu, to replicate the original growing environment for aquatic plants. 

Indoor experiment 

The indoor cultivating experiments were conducted in 70 L (0.5*0.35*0.4 m) cubic 

plastic containers. In each container, there were about 50 L water with initial N&P 
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concentration, moderate sediment at bottom (around 0.12 m depth), and 500 g submerged 

plants or 5 emerged plants. The total water depth was around 0.3 m. Besides, control 

experiments (no plants) were also arranged. Each container had a duplicate (Fig. 2). All 

containers were settled together to ensure other environmental conditions unified. The 

experiment was conducted in a ventilated indoor area. The temperature was set at room 

temperature. The avarage temperture was around 20℃ while it reached 7-8℃ in 

December and was over 30℃ in July and August. The sunny weather contained 60% of 

experimental days, thus the sunlight was abundant. The initial pH and the dissovled oxgen 

content (DO) of the water were around 6.7 and 9 mg/L, repectively. 

 

Figure 2. Experiment arrangement. Phragmites australis and Zizania latifolia are emerged 

plants showed in the left, Hydrilla verticillata is the submerged plant showed in the middle and 

control groups with no plants are showed in the right. Each experimental container has a 

duplicate 

 

 

Sampling and analysis 

The indoor cultivating experiment initiated from May and ended at the end of 

December 2016, covering a life cycle of aquatic plants. The frequency of taking plants 

and sediment samples was twice per month, around the 10th and the 20th of each month. 

Around 10 g plants samples and 50 g sediment samples were taken synchronously from 

every container every time. Emerged plant samples were separated into leaves, stems and 

roots, while submerged plant samples were analyzed as a whole since they were too small 

to separate. Samples were operated orderly by freeze-drying, grinding and sieving. Then 

total nitrogen concentration (TN) and total phosphorus concentration (TP) of samples 

were analyzed in a timely manner. TN of samples were analyzed by persulfate digestion 

(Smarta et al., 1983) while TP of samples were analyzed by SEDEX method (Ruttenberg, 

1992). Analysis experiments of all parameters at different time were repeated 3 times. 

Around 200 ml water samples were taken from each container once a week. Samples were 

saved in fridge with the temperature around 5℃. Analysis experiments were conducted 

within 24 h after sampling. The following water parameters were analyzed: pH, dissolved 

oxygen content (DO), chemical oxygen demand (COD), TN, TP, ammonia nitrogen 

(NH4
+-N) and nitrate nitrogen (NO3

--N). pH and DO were recorded by a multi-parameter 
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data logger (YSI 6820). Analysis experiments of other parameters were proceeded 

accroding to standard techniques (APHA, 1980; Valderrama, 1981; Jin and Tu, 1990). 

Analysis experiments of all parameters at different times were repeated 3 times. 

Statistical analysis 

First, parameters of water, aquatic plants and sediment samples were sorted by time, 

plant species and organs. Prior to statistical analysis, the normality of data sets was tested 

with Shapiro–Wilk test (Wang et al., 2012). Then, the T test was applied for statistical 

comparison of measured values among different times, plant species and organs for judge 

whether a detected trend was statistically significant or not. Last, parameters of water, 

aquatic plants and sediment samples were analyzed by Spearman correlation analysis 

(IBM statistic, version 22) to learn the flow progress of N&P in water-aquatic plants-

sediment. A p-value of <0.05 was considered statistically significant. 

Result 

To obtain up-to-date distribution of aquatic plants and N&P loads in Lake Gehu, 

surveys were conducted in 2016. There are about 15 species of aquatic plants: 3 

submerged macrophyte, 7 emerged plants, 3 floating plants and 2 floating-leaved 

macrophyte. Among these species, two emerged plants Phragmites australis (Ph.a.), 

Zizania latifolia (Z.l.), and one submerged plant Hydrilla verticillata (H.v.), have 

evidently high coverage, frequency and abundance which are critical parameters to 

calculate the Simpson index (Magurran, 1988). TN in water was 2.343 mg/L while TP 

was 0.245 mg/L. Both TN&TP reach the Ⅴ level (TN=2.0 mg/L; TP=0.2 mg/L) 

according to the Chinese environment quality standard (Environment quality standard for 

surface water-GB 3838-2002) which indicates that Lake Gehu is still highly 

eutrophicated. 

N and P in plants 

In the experiment, May, August and December repersent the germination, flourish 

growth and decay periods of aquatic plants. Values of TN&TP in plants in August are 

significantly higher than in May and December (p<0.05); There is a significant difference 

between emerged plants and submerged plants (p<0.05). A significant difference is also 

found between different organs of emerged plants (p<0.05). Changing trends of TN&TP 

in plants with time, organs and species are shown in Figures 3 and 4 in detail. 

Curves of TN&TP in two emergent plant leaves are unimodal in general, while peaks 

mainly lie between July and September (Fig. 3). No significant difference is observed for 

TN between two emerged plant leaves (p=0.258). The variation range starts from around 

10 mg/g, gradually increases and reaches the maximum at 25 mg/g, and finally decreases 

to about 1 mg/g. TP of two emerged plants have similar start and end values, around 1.3 

mg/g and 0.1 mg/g, respectively. However, the TP peak of Ph.a. reaches 2.5 mg/g while 

that of Z.l. is relatively lower at 1.8 mg/g. From May to October, leaves contained the 

most nutrient, with TP accounting for over 50% of total and TN accounting for nearly 70-

75%. Values in leaves are significantly higher than in stems and roots (p<0.05). TN&TP 

in emerged plant stems both show a continuous downward trend with fluctuation, but 

value ranges are significantly different (p<0.05). In April and May, when peaks appeared, 

TN is around 10 mg/g while TP is around 1.5-1.8 mg/g. TN&TP then decrease to 1.0 
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mg/g and 0.1 mg/g respectively at the end of experiment. Besides, in this two periods, 

TN&TP in stems and leaves are close (TN: p=0.637; TP: p=0.542). TN&TP in emerged 

plant roots are generally steady but fluctuate near the end of the experiment. TN&TP in 

Ph.a. roots are higher than those in Z.l., although the difference is not significant (TN: 

p=0.071; TP: p=0.062). During May-September, TN&TP in roots account for less than 

10% of total. However, in October-December, TP in roots is significantly higher than in 

stems and leaves (p<0.05), the proportion increase with over 50%. Changes of TN&TP 

in emerged plant leaves, stems and roots indicate that leaves absorb large amount of 

nutrient and act as the main organ to store nutrient at early and medium stages of plant 

growth. However, when plants decay, nutrient in roots increases while that in leaves and 

stems both decreases. Therefore, roots are the main organ to store nutrient when emerged 

plants decay. In conclusion, in emerged plants, nutrients are absorbed from outside and 

stored mainly in leaves at early and medium stages of growth but gradually transferred to 

roots when decay. 

 

Figure 3. Total nitrogen (TN) in Phragmites australis (Ph.a.) (a), Zizania latifolia (Z.l.) (b) and 

total phosphorus (TP) in Ph.a.(c), Z.l.(d). In total 4 samples are collected for each month, of 

which 2 samples are collected at the 10th of the month and the other 2 collected at the 20th of 

the month. The mean values for each month are presented by color bars and the standard 

deviations are presented by error bars 

 

 

Although curves of TN&TP in H.v. are both unimodal (Fig. 4), values of TN are 

significantly higher than TP (p<0.05). TN increases from around 15 mg/g to around 

36 mg/g, then decreases to around 5 mg/g. While TP increases from around 3 mg/g to 

about 6 mg/g, then decreases to less than 1 mg/g. Peaks appear in July and August. The 
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ratio of TN to TP of H.v. is around 5:1 to 7:1, and this ratio of Ph.a. and Z.l. is the most 

around 15:1. It indicates that the growing of H.v. is limited by N while the growing of 

Ph.a. and Z.l. is limited both by N and P (Tessier et al., 2003). 

 

Figure 4. Total nitrogen (TN) and total phosphorus (TP) in Hydrilla verticillata (H.v.). In total 

4 samples are collected for each month, of which 2 samples are collected at the 10th of the 

month and the other 2 collected at the 20th of the month. The standard deviations are presented 

by error bars 

 

 

N and P in sediment 

Values of TN&TP in sediments in May and December are significantly higher than in 

August (p<0.05). There is a significant difference between control groups (no plants) and 

plant groups (p<0.05). Changing trends of TN&TP in sediments with time are shown in 

Figure 5 in detail. 

 

Figure 5. Changing trends of total nitrogen (TN) (a) and total phosphorus (TP) (b) in sediment 

with time. ‘Ph.a.’, ‘Z.l.’ and ‘H.v.’ represent sediment samples from Phragmites australis 

groups, Zizania latifolia groups and Hydrilla verticillata groups, respectively. In total 4 

samples are collected for each month, of which 2 samples are collected at the 10th of the month 

and the other 2 collected at the 20th of the month. The standard deviations are presented by 

error bars 

 

 

No significant difference is observed for the TN&TP in control groups sediment 

among different times (TN: p=0.061; TP: p=0.057), changing trends are basically in 

stable state with slight fluctuations (Fig. 5). TN ranged from 190.54 to 227.93 mg/kg, 
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while TP ranged from 446.72 to 453.27 mg/kg. TP decreased at the beginning because 

the concentration between water and sediment tended to equilibrate phosphorus 

concentration (EPC0) (Zhou et al., 2005). Slight fluctuations might be caused by 

temperature variation. Changing trends of TN in the sediment of the container with 

emerged plants are similar (Fig. 5a). And variation ranges are close (p=0.457), 

93.43-211.35 mg/kg. In the first two months, the value sharply decreased by 50.45 mg/kg 

(p<0.05), while in the last two months, it dramatically increased by 90.72 mg/kg (p<0.05). 

However, it was relatively stable around 93-125 mg/kg during other months. It indicates 

adsorption and desorption effects of sediments are not obvious when aquatic plants exist 

in the system. Changing trends of TP in three aquatic plants sediment are similar, rising 

first and then fluctuating (Fig. 5b). The value range is close (p>0.05). The minimum at 

the beginning was around 350.00 mg/kg, then the value increased by around 

150.00 mg/kg during the first month. The maximum value appeared in the end, around 

550 mg/kg. 

Water parameters 

All water parameters, except NH4
+-N, show significant difference in May, August and 

December (p<0.05; NH4
+-N: p=0.242). All water parameters, except NH4

+-N, show 

significant difference between control groups (no plants) and plant groups (p<0.05; NH4
+-

N: p=0.463). However, to show the transforming of different forms of N in water, NH4
+-

N concentration was still contained in Fig. 6. 

 

Figure 6. Changing trends of total phosphorus (TP) (a) and three forms of nitrogen (N) (b) in 

water samples with time. ‘Ph.a.’ and ‘H.v.’ represent water samples from Phragmites australis 

groups and Hydrilla verticillata groups, respectively. ‘TN’, ‘NH4
+-N’ and ‘NO3

--N’ represent 

concentration of total nitrogen, ammonia nitrogen and nitrate nitrogen, respectively. In total 8 

samples are collected for each month, of which 2 samples are collected every week. The mean 

values for each month are presented by color bars and the standard deviations are presented by 

error bars 

 

 

pH, DO and COD 

pH, DO and COD in control groups show no signifcant difference with time (p>0.05). 

Control groups pH was between 8.0 and 8.5, water was alkalescence. DO fluctuated in 

8.0-11.0 mg/L. COD was below 5.0 mg/L all the time and stayed at a relatively low level. 
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In general, water quality of control groups is good (Table 1). Values of these 3 water 

parameters in aquatic plants are close and no significant difference is found (p>0.05). pH 

decreased from 8.0 to around 6.5 first, and then increased to 8.0, so the water changed 

from alkaline to faintly acidic and resumed to alkaline. It might have a relation with 

concentrations of phosphate radical (PO4
3-) and ammonium radical (NH4

+). DO kept low 

level in aquatic plant groups, the avarage was below 2.0 mg/L. COD increased first then 

declined. These two parameters are both affected with plants biomass. 

 
Table 1. pH, dissolved oxygen (DO) and chemical oxygen demand (COD) in the water samples 

of aquatic plants and control groups 

Month 
Control Ph.a. Z.l. H.v. 

pH DO COD pH DO COD pH DO COD pH DO COD 

May 8.5 7.7 2.7 8.1 3.8 5.6 8.0 4.0 6.5 7.3 2.7 6.3 

Jun 8.3 8.0 2.6 7.7 3.3 9.9 7.8 3.3 9.6 7.5 1.3 13.6 

Jul 8.1 8.2 2.8 7.5 2.5 13.7 7.5 2.1 13.4 7.3 0.5 19.4 

Aug 8.2 8.4 2.5 7.6 2.0 15.8 7.2 1.0 15.0 7.3 0.3 23.3 

Sep 8.5 8.7 2.3 7.2 0.8 11.9 7.3 1.3 10.6 7.1 0.1 16.0 

Oct 8.3 8.7 2.6 6.7 1.2 9.0 6.6 0.7 8.5 6.5 0.2 12.7 

Nov 8.0 8.5 2.7 6.9 1.4 7.3 7.0 0.9 6.8 7.1 0.3 9.5 

Dec 8.2 8.0 2.5 7.6 2.0 6.0 7.4 1.4 5.5 7.7 0.5 6.6 

The unit of DO and COD are both mg/L. ‘Ph.a.’, ‘Z.l.’ and ‘H.v.’ represent water samples from 

Phragmites australis groups, Zizania latifolia groups and Hydrilla verticillata groups, respectively. In total 

8 samples are collected for each month, of which 2 samples are collected every week 

 

 

N&P in water 

Values of TN&TP in water have no significant difference in emerged plants 

(TN: p=0.534; TP: p=0.730). Also the changing trends are similar. Therefore, Ph.c. is 

selected as representative of emerged plants for plots (Fig. 6). 

The TP in water of control groups ranged from 0.15 mg/L to 0.21 mg/L, with a 

continuously declining trend. Range of TN (NO3
--N, NH4

+-N) in water of control groups 

was 1.5-2.0 mg/L (0.7-1.1 mg/L, 0.10-0.14 mg/L). TN and NO3
--N both declined with 

fluctuations, while NH4
+-N maintained a steady state with slight fluctuations. This 

reflects the process of nutrient exchange between water and sediment forced by 

concentration gradient. The TP in water of plant groups decreased at the beginning and 

near the end of the experiment. The range of TN (NO3
--N, NH4

+-N) was 1.00-2.00 mg/L 

(0.20-1.10 mg/L, 0.03-0.17 mg/L), which were all lower than those in control groups 

(p<0.05). NH4
+-N accounts for less than 10% of TN on average while NO3

--N accounts 

for more than 50% of TN on average. 

Comparing control groups and plant groups, it can be concluded that plants can 

stimulate nutrient flowing, and biochemical action is a more powerful force than 

concentration gradient. NO3
--N is the main form of N existing in water and transform 

between NO3
--N and NH4

+-N are controlled by nitrification and denitrification (Reddy et 

al., 1990). From May to August TN&TP in water of emerged plants decreased by 0.800 

mg/L and 0.115 mg/L, respectively while those of submerged plants decreased by 1.000 

mg/L and 0.141 mg/L, respectively. Declines of TN&TP in water of submerged plants 
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are greater than those of emerged plants (p<0.05). Submerged plants act better in 

removing N&P loads than emerged plants. 

Correlation analysis 

The experiment lasted 8 months (May-December). Plants and sediment samples were 

collected twice per month (at 10th and 20th), while water samples were collected 4 times 

per month (including 10th and 20th). Besides, each experimental container had a 

duplicate (Fig. 2). Thus, parameters of samples at 10th and 20th every month are used for 

spearman correlation analysis, and the number of samples were 32. 

Correlations of TN, TP in plants and sediment are shown in Table 2. There is a 

significant negative correlation between TN in roots of emergent plants and TN in 

sediment. TN in submerged plants has a significant negative correlation with TN in 

sediment. TP in plants and sediment does not present strong correlation. It indicates that 

N flow mainly occurred between plants and sediment directly by biochemical action of 

roots. 

 
Table 2. Spearman's rank correlation coefficient of N&P between aquatic plants and 

sediments 

Ph.a. 

Sediment 
Leaf Stem Root 

TN TP TN TP TN TP 

TN -0.692 -0.167 -0.095 -0.079 -0.903** -0.733 

TP -0.429 -0.396 -0.381 -0.245 -0.123 -0.054 

Z.l. 

Sediment 
Leaf Stem Root 

TN TP TN TP TN TP 

TN -0.214 -0.108 -0.214 -0.095 -0.819* -0.524 

TP -0.046 -0.180 -0.333 -0.476 -0.167 0.024 

H.v. 

Sediment Plants TN Plants TP 

TN -0.833* -0.810* 

TP 0.381 0.286 

‘Ph.a.’, ‘Z.l.’ and ‘H.v.’ represent samples from Phragmites australis groups, Zizania latifolia groups and 

Hydrilla verticillata groups, respectively. TP and TN represent for total nitrogen concentration and total 

phosphorus concentration, respectively. n=32 (number of samples). Statistical significance codes: * p＜

0.05; ** p＜0.001 

 

 

Correlations of TN&TP in plants and sediment with water parameters are shown in 

Table 3. There is no significant correlation in control groups. TN&TP in emerged plant 

leaves and submerged plants have a strong positive correlation with water COD. There is 

a significant negative correlation between TP in water and sediment. These suggest plant 

growth may increase the content of organic matters in water, which can be a hazard of 

aquatic plants restoring eutrophicated lakes. P flow mainly relies on water since it shows 

no strong correlation between plants and sediments but presents a significant negative 

correlation between water and sediments. 
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Table 3. Spearman's rank correlation coefficient of N&P in aquatic plants and sediment with 

water parameters 

  pH DO COD TP TN NH4
+-N NO3

--N 

Control Sediment 
TN 0.000 -0.185 0.354 0.536 0.607 0.350 0.590 

TP 0.068 -0.202 0.110 0.647 0.479 0.595 0.513 

Ph.a. 

Leaf 
TN -0.060 -0.072 0.922** -0.180 -0.552 -0.627 -0.078 

TP 0.683 0.683 0.19 0.452 0.268 -0.060 0.659 

Stem 
TN 0.587 0.635 0.119 0.524 0.220 0.012 0.755* 

TP 0.647 0.719* 0.167 0.476 0.220 -0.024 0.719* 

Root 
TN -0.647 -0.623 0.024 0.429 0.415 0.335 0.096 

TP -0.373 -0.133 -0.455 -0.310 0.761* 0.819 0.548 

Sediment 
TN 0.371 0.347 -0.476 -0.333 -0.073 -0.120 0.048 

TP -0.323 -0.204 0.190 -0.826* -0.537 0.012 -0.671 

Z.l. 

Leaf 
TN -0.048 -0.084 0.952** -0.299 0.335 -0.623 0.060 

TP 0.132 0.125 0.886** -0.211 0.380 -0.584 0.211 

Stem 
TN 0.643 0.643 0.524 0.431 0.671 -0.275 0.743* 

TP 0.643 0.594 0.357 0.491 -0.695 -0.060 0.719* 

Root 
TN -0.810* -0.841* 0.333 0.024 -0.144 0.275 -0.144 

TP -0.762* -0.793* 0.310 -0.048 -0.395 0.108 -0.180 

Sediment 
TN 0.381 0.314 -0.310 -0.359 -0.252 -0.347 -0.156 

TP -0.357 -0.344 0.071 -0.874** -0.371 -0.515 -0.554 

H.v. 

Plant 
TN -0.012 -0.096 0.905** -0.482 0.096 -0.619 -0.466 

TP -0.025 -0.096 0.857** -0.518 0.084 -0.690 -0.479 

Sediment 
TN -0.074 -0.036 -0.619 0.265 -0.252 0.429 0.184 

TP 0.356 -0.024 0.548 -0.778* -0.299 -0.690 -0.675 

Explanation of abbrevations: Phragmites australis groups (Ph.a.), Zizania latifolia groups (Z.l.), and 

Hydrilla verticillata groups (H.v.), total nitrogen concentration (TN), total phosphorus concentration 

(TP), dissolved oxgen concentration (DO), ammonia nitrogen concentration (NH4
+-N) and nitrate 

nitrogen concentration (NO3
--N). n=32 (number of samples). Statistical significance codes: * p＜0.05; 

** p＜0.001 

 

 

Discussion 

Difference of nitrogen and phosphorus flow 

The difference of N&P flow is that N transfers mainly between sediments and plants, 

while P needs water to realize cycling. P in water is diversified into the total particle 

phosphorus (TPP) and the total dissolved phosphorus (TDP). Large amount of TPP can 

transfer in a short time. Most of P release during the eluviation (Liu et al., 2018) is one 

phenomenon caused by this. It implies P flow is mainly a physical process. Biochemical 

actions of plants have minor effect on P flow (Smil, 2000). It can explain the strong 

correlation of P in sediment and water, also the conclusion of P flow relying on water. In 

addition, this conclusion applies to some natural catchments. For example, TPP is the 

main form of P in many rivers (Meybeck, 1982). N is identified as the organic nitrogen 

(ON) and the inorganic nitrogen (IN). The latter is the main form of N in water and 

sediment. IN can be known as NH4
+-N, NO3

--N, and NO2
—N. But plants need to 

transform IN to ON to meet growing requirements. It indicates N flow is mainly through 
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biochemical reaction, which is also concluded in other research (Rattray et al., 1991). For 

example, NO3
--N can be transformed to NH4

+-N through catalytic reduction by nitrate 

reductase (May et al., 2011); nitrification and denitrification, influenced by plants growth, 

can make mutual transformation of NH4
+-N, NO3

--N, and NO2
--N (Reddy et al., 1990). 

Thus there is a significant negative correlation between N in plant roots and sediment, 

and N flow is mainly between plants and sediment rather than between sediment and 

water. 

Emerged plants vs submerged plants 

Emerged plant leaves and stems are usually above water surface, while roots and part 

of stems are under water surface. Therefore, emerged plants have properties of both land 

and aquatic plants. Their roots are the main organ absorbing nutrient from sediments, 

meanwhile they can get abundant sunlight. Thus they usually show large biomass. 

Besides, emerged plants can weaken hydraulic dynamics and prevent sediment suspended 

(Hans, 1997). Furthermore, it can reduce sediments desorption effects. To sum up, 

emerged plants have significant effects on N&P in sediment, which is also showed in the 

correlation analysis of this study. Submerged plants are usually entirely under water 

surface, so they have larger biomass within water than emerged plants. Large biomass is 

likely to make water turn to anaerobic state which will stimulate the release of N&P 

(Reddy et al., 1990; Liu et al., 2002). In this study, sharp decrease of TN&TP in H.v. 

during Aug.-Oct. (Fig. 4) verifies the conclusion mentioned above. The submerged plants 

have roots degraded due to the limitation of light intensity (Phillips et al., 1978; Jones et 

al., 1999), but their other parts all have the ability of absorbing water and nutrient. Thus 

submerged plants have strong connections with N&P in water. In natural lakes, 

commensalisms and competitions between emerged and submerged plants are ubiquitous, 

and it is worthy of consideration in further studies. 

Some suggestions for aquatic plants restoration 

According to Fig. 6, N&P in water show a sharp decline during plants growth, which 

indicates aquatic plants do have the ability of removing excess nutrient in water. 

Moreover, submerged plants act better than emerged plants in removing nutrient, so 

submerged plants are the superior choice in restoring eutrophicated lakes. And some 

studies, focusing on effects of submerged plants restoration, have already verified the 

practicability of this suggestion (Gao et al., 2017). However, the results also show aquatic 

plants can release a large amount of N&P when they decay. Therefore, it may cause a 

secondary pollution unless aquatic plants are reaped scientifically. For saving cost, it’s 

essential to know the time and main plant organs to reap. Reaping the 3 aquatic plants 

around August and September is a proper timing. At this time around 70-75% TP and 

80% TN of water can be removed according to Fig. 6. However, this value could be lower 

in lakes since hydrodynamics and some other conditions are not considered in this study. 

Besides, emerged plant leaves need to be reaped by times, since leaves fall easily in 

natural environment and the residue can release nutrient directly into sediment and water. 

Although emerged plant roots contain most nutrient when plants decay, it is not suggested 

to reap roots, because they are the key of plant regeneration and moderate residues are 

helpful to remove N (Gessner, 2000; Hernes et al., 2001). If controlling P loads is the 

main purpose, it is imperative to reap plants before P in plants reach the peak. The reason 

is the amount of P release is large within a short time when plants decay (Liu et al., 2018). 
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On the other hand, if controlling N loads is the main purpose, reducing content of NO3
--

N by enhancing denitrification would be an effective action. 

In Fig. 6, there is another low value occurring around November and December, 

because N&P are adsorbed by sediments after plants decay. Thus, purifying sediments at 

this time can remove around 90% N&P in water. Although this value could be lower in 

lakes where water and sediment interactions are strong, purifying sediment is still 

necessary to prevent sediment become the source of N&P. However, it is too costly to 

initiate a project specifically for such purpose. As a result, the purification can be 

combined and included within some other engineering projects like dredging and 

reclamation at the appropriate time. As this experimental study has simplified some 

complicated environmental conditions, further studies could be done to find more 

integrated solutions for restoring the highly eutrophicated lakes. 

Conclusion 

For increasing the efficiency of using aquatic plants to restore eutrophic lakes and 

learning the rule of N&P flow between water, aquatic plants and sediment, indoor 

experiments were conducted. The general process of N&P flow in the system is from 

water and sediments to plants, then back to water, and finally they are adsorbed by 

sediments. However, N flow is mainly between plants and sediment, while P flow is 

mainly between water and sediment. Generally, N flow is a biochemical process, while P 

flow is a physical process. N&P in emerged plants are stored in leaves at early and 

medium stages of growth (May-October) and transferred to roots at the decline stage 

(November-December). Submerged plants act better in removing excess nutrient in water, 

but harvesting them before N&P contents reaching peak is indispensable (August). 

Purifying sediments after plants decay (December) can be helpful to decrease N&P loads, 

which can be combined and included within some other engineering projects. 

Competition and promotion exist between different species of aquatic plants in nature, 

which may reduce or improve effects of using aquatic plants to restore eutrophic lakes. 

Thus, learning competition and promotion between different aquatic plants species is a 

meaningful direction for further study. 
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