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Abstract. This study employed Illumina MiSeq high-throughput sequencing to explore the composition 

of the bacterial community of Chagan Lake sediments and its response to soil physicochemical properties. 

Our findings indicated that bacterial abundance and diversity are significantly correlated with water 

depth. Particularly, the bacterial alpha diversity and phyla relative abundance increased with water depth. 

Furthermore, the five dominant bacterial phyla in the bacterial community according to all plots were 

Proteobacteria, Chloroflexi, Acidobacteriota, and Actinobacteriota. Moreover, our findings indicated that 

electrical conductivity (EC), pH, and total carbon (TC) in sediments are important factors that affect the 

bacterial community structure and diversity of sediments. In summary, the bacterial community structure 

and diversity varied significantly in different plot sediments of Chagan Lake, which were regulated by 

soil nutrients and physical properties. The results of this study can be used to further explore the potential 

relationship between bacterial communities and the environment, and provide a scientific basis for the 

prediction of ecosystem structure and function of alpine inland wetlands. 

Keywords: soil environmental factors, soil physicochemical properties, bacterial composition, water 

depth, functional prediction 

Introduction 

Microbial community and diversity in sediments are crucial for lake ecosystems. 

Particularly, sediment microbes drive the morphological transformation and 

geochemical cycle of most bioactive elements, regulate the environmental quality of 

water bodies, and contribute to water purification (Wan et al., 2017; Li et al., 2017). 

Furthermore, the distribution of sediment microbial communities is also affected by 

environmental factors such as temperature, pH, dissolved oxygen, electrical 

conductivity and nutrients (Chen et al., 2010; Fermani et al., 2013; Shao et al., 2013; 

Zhang et al., 2019). Therefore, studying the diversity, community composition, and 

environmental factors that shape sediment microbial communities is critical for the 

conservation of lake ecosystems. 
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Bacteria are a major component of lake microbial communities and are the main 

decomposers of organic compounds. Several studies have evaluated the microbial 

community structure of lake sediments and have reported that the microbial community 

composition of sediments varies depending on location, season, and sediment depth. 

Huang et al. (2015) studied the composition of bacterial communities in the sediments 

of Meiliang Bay, Xuhu Lake, and East Taihu Lake in summer, and found that the 

dominant bacterial phyla in different lake areas varied depending on the region. Chen et 

al. (2010) found that the composition of eukaryotic microbial communities in Meiliang 

Bay and the lake center of Taihu Lake exhibited obvious seasonal changes, and different 

lake areas responded differently to environmental factors. Meiliang Bay and the lake 

center were affected by total phosphorus (TP), total nitrogen (TN), and electrical 

conductivity (EC). However, Wan et al. (2017) found that, rather than lake location, 

season was the most important determinant of microbial community structure in 

sediments. Ye et al. (2009) found that although the vertical distribution of bacterial 

communities in the sediments of Meiliang Bay in Taihu Lake was similar, the 

composition of archaeal communities varied significantly depending on water depth. 

Chagan Lake is the largest inland lake in Jilin Province and is located within a large 

water network between the Nenjiang and the Huolin rivers. It is an important fishery 

base in Jilin Province and the largest lake in the Songliao Plain. Research on Chagan 

Lake has largely focused on characterizing the levels of organic matter in its sediments 

(Qu et al., 2021), its benthic community structure (Du et al., 2020), and the elemental 

composition of its sediments (Bu et al., 2009). However, very few studies have explored 

the microbial community composition of Chagan Lake sediments. Therefore, our study 

collected sediments from a 10–15 cm depth in the coastal areas of Chagan Lake and the 

center of the lake in 2017. The bacterial community structure of the sediments was then 

characterized via high-throughput sequencing technology to explore its relationship 

with different sediment properties. Collectively, our findings provide insights into the 

formation mechanism of sediment bacterial communities in Chagan Lake, which can 

serve as a theoretical basis for maintaining the stability of the Chagan Lake ecosystem. 

Material and Methods 

Research area 

Chagan Lake (124°03'–124°34', 45°09'–45°30') is located in the boundary of the 

northwestern Jilin Province, Inner Mongolia Autonomous Region, Heilongjiang 

Province, and Jilin Province in China, and acts as a weir at the end of the Huolin River. 

Sai Lake is among the top ten freshwater lakes in China, the largest natural lake, and the 

largest fishery production base in Jilin Province at the confluence of the Songhua River, 

the southern source of Songhua River, and the Nen River (Figure 1). The lake has an 

area of 420 km2 and an average water depth of 2.5 m. Furthermore, the lake integrates 

with the Xindianpao and Mayingpao lakes when the water level reaches 130 m. Chagan 

Lake is primarily replenished through natural precipitation, water diversion from the 

Songhua River, and return water from irrigation areas. The lake is surrounded by 

farmlands and is therefore severely affected by agricultural non-point source pollution. 

Saline-alkali land and sandy terrain are widely distributed around the lake and serve as a 

runoff collection area. Furthermore, the rapid development of tourism and catering 

services in the surrounding area threatens the water quality of Chagan Lake. In this 

study, nine sampling points were established across Chagan Lake based on its habitat 
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characteristics (Figure 1). According the water depth, we divided 9 soil point into three 

categories: low water depth (S7 and S9) ≤ 2 m, medium water depthe (S1 and S8) 

between 2 m and 3 m and high water depth (S2, S3, S4, S5 and S6) ≥ 3 m. 

 

Figure 1. Distribution of sampling sites in Chagan Lake. (a) the map of China and the red point 

is the research site; (b) research site and S1-S9 indicated the locations of sediment samples 

taken 

 

 

Sediment samples 

On October 10, 2017, sediment samples were collected from a 10–15 cm depth from 

the surface of the lake bottom using a stainless steel grab. In each plot, the five sediment 

soils (each sediment soil were ~100 g) were taken and then mixed one sediment soil. 

The samples were then placed in sterilized self-sealing bags, stored at 4 °C, and quickly 

transported to the laboratory. Microbial DNA was immediately extracted from a portion 

of the fresh sediment samples, whereas the other portion was freeze-dried, ground, 

passed through a 125 μm sieve, and stored at -20 ℃ to characterize the physicochemical 

properties of the sediment samples within one week. 

Analysis of physical and chemical indicators 

The soil-water pH ratio of the sediment (1:2.5) was determined using a pH meter, the 

EC value of the sediment was determined using a soil EC value tester, and the total 

carbon (TC), total nitrogen (TN), and total phosphorus (TP) in the sediment were 

determined via ammonium molybdate spectrophotometry. 
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DNA extraction and sequencing of sediment microorganisms 

The total DNA of the microorganisms in the sediment samples was extracted using 

the FastDNA SPIN kit (MP Biomedical, USA). PCR amplification was performed on 

the V3-V4 region of the 16S rRNA of the DNA samples using the 338F (5′- ACT CCT 

ACG GGA GGC AGC AG-3′) and 806R (5′- GGA CTA CHV GGG TWT CTA AT-3′) 

primer pair. Each 30 μl reaction contained 100 ng of template DNA, 15 μl 2x EasyTaq 

PCR SuperMix, and 10 μM of primers. All reactions were conducted in triplicate in a 

Veriti 96-well fast thermocycler (ABI, USA) and the reagents used in our experiments 

were purchased from Beijing Quanshijin Company. The PCR amplification conditions 

were the following: pre-denaturation at 95 °C for 2 min, followed by 30 cycles of 

denaturation at 95 °C for 20 s, annealing at 52 °C for 60 s, extension at 72 °C for 60 s, 

and a final extension at 72 °C for 10 min. 

Bioinformatics and statistical analyses 

The purified sediment PCR products were sequenced on the Illumina MiSeq platform 

(Illumina, USA) (2 × 300 bp paired-end sequencing). Quality control measures were 

taken to ensure the quality of the reads, and the original sequences were filtered and 

spliced, after which chimeric sequences were removed using the QIIME2 software 

(Bolyen et al., 2019) and the sequence length was screened. The clean reads were then 

assigned to different operational taxonomic units (OTUs) at a 97% similarity threshold 

using QIIME. Annotation of taxonomic information from the phylum to genus level was 

performed by aligning the sequences with those in the SILVA database using RDP 

Classifier. The OTUs were analyzed based on abundance and diversity indices, 

including the Chao1 and ACE indices of community richness, as well as the Shannon 

and Simpson indices of community evenness. 

Multiple comparisons between groups were conducted through one-way analysis of 

variance (ANOVA) using the SPSS 26.0 software and differences were considered 

statistically significant at P<0.05. Pearson correlation was used to analyze the 

correlation between the physicochemical properties of the sediment and the alpha 

diversity of the sediment, and correlations were considered statistically significant at 

P<0.05 and P<0.01. The top 50 bacterial phyla with the highest abundances and soil 

physicochemical properties were visualized in heatmaps using the ‘vegan’ package in R 

(R Development Core Team, 2017). Canonical association analysis was performed 

using Canoco5.0. Principal co-ordinates analysis (PCoA) was also conducted based on 

OTU-level composition profiles using the ‘vegan’ package in R. Dilution profiles were 

also analyzed using the ‘vegan’ package. Functional predictive analysis (Functional 

Annotation of Prokaryotic Taxa, FAPROTAX) was used to predict the microbial 

functions in the sediments. Permutational Multivariate Analysis of Variance 

(PERMANOVA) performed by R software using the ‘vegan’ package. 

Results 

Analysis of physicochemical properties of the bottom sediments in Chagan Lake 

As summarized in Table 1, the water depths of the nine points in Chagan Lake 

ranged from 1.4 m (S7) to 3.6 m (S6). Soil TP in sediments ranged from 0.34 to 

1.07 g/kg, TC ranged from 3.23 to 47.96 g/kg, TN ranged from 0.26 to 3.03 g/kg, pH 

ranged from 8.2 to 9.0, conductivity ranged from 519 to 1082, and the C/N variation 
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ranged from 0.4 to 6.69. Among the sampling points, S4 had the highest TP, TC, TN, 

and EC, reaching values of 1.07 g/kg, 47.96 g/kg, 3.03 g/kg, and 1082, respectively. In 

contrast, S1 had the lowest TP and TN levels (0.34 and 0.71 g/kg, respectively). 

 
Table 1. Soil physicochemical properties at different points across Chagan Lake 

Plots TP TC TN C/N pH EC Water depth Categories 

S1 0.34 9.46 0.71 0.55 8.62 1049 2.3 medium 

S2 0.83 33.81 1.97 0.44 8.83 1002 3.6 high 

S3 0.18 3.23 0.26 0.48 8.86 1069 3 high 

S4 1.07 47.96 3.03 0.57 8.7 1082 3.5 high 

S5 0.50 15.02 0.86 0.54 8.84 980 3.1 high 

S6 0.82 29.71 1.67 0.4 9.00 1030 3.6 high 

S7 0.65 26.60 1.75 0.58 8.27 552 1.4 low 

S8 0.39 10.20 0.76 6.69 8.84 985 2.1 medium 

S9 0.62 36.03 2.4 6.13 8.2 519 1.9 low 

 

 

Rarefaction curve of bacterial communities in the bottom sediment of Chagan Lake 

The rarefaction curve reflects the sampling depth of the sample and can be used to 

evaluate whether the sequencing volume is sufficient to cover all taxa. Figure 2 

illustrates the rarefaction curve of all samples in this experiment under a 97% similarity 

threshold. As illustrated in Figure 2, the dilution curves of all soil samples tended to be 

flat, indicating that the read numbers were high enough to accurately reflect the 

bacterial community structure of the soil samples. 

 

Figure 2. Rarefaction curves of different sample points in Chagan Lake 

 

 

Alpha diversity of the bacterial community of Chagan Lake sediment 

As summarized in Table 2, the coverage of each sample library ranged from 97% to 

98%, indicating that the sequencing results accurately reflected the structure of the 

bacterial communities in the sediments. The abundance of bacterial communities 
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reflected by the Chao1 and Ace indices exhibited the same order: low water depth (S7 

and S9) < medium water depth (S1 and S8) < high water depth (S2, S3, S4, S5, S6). In 

other words, the water level increased proportionally with flooding degree, and bacterial 

abundance was affected by the water level. Bacterial abundance was highest at the S2, 

S3, and S4 sample points (where the water level was high), but the results at low water 

depths did not change significantly (P<0.05). In contrast, the bacterial Shannon indices 

at medium water depths were significantly different but exhibited no consistent trend 

(P<0.05). Therefore, these findings demonstrated that the water depth significantly 

affected the bacterial abundance in the sediments, but the difference in the uniformity 

was not significant. 

 
Table 2. Bacterial alpha diversity in Chagan Lake sediments 

Plots Sobs Shannon Simpson Ace Chao1 Coverage (%) PD 

S1 2384.00 6.05 0.01 3129.86 3063.26 98 238.59 

S2 2797.00 6.46 0.00 3483.69 3473.16 98 276.22 

S3 2683.00 6.36 0.00 3451.95 3470.29 98 258.66 

S4 2688.00 6.30 0.01 3524.26 3466.48 98 262.85 

S5 2731.00 6.41 0.00 3497.31 3481.71 98 269.15 

S6 2567.00 6.06 0.01 3528.15 3510.47 97 257.76 

S7 2243.00 6.11 0.01 2864.26 2854.29 98 217.81 

S8 2607.00 6.35 0.01 3405.81 3398.09 98 250.17 

S9 2165.00 6.11 0.01 2832.75 2850.00 97 211.01 

One-way ANOVA 

(Water depth) 
P<0.05 P<0.05 P>0.05 P<0.05 P<0.05 P>0.05 P<0.05 

 

 

Beta diversity of the bacterial community in Chagan Lake sediment 

According to the principal coordinate analysis of the Pearson distance algorithm at 

the OTU level, the correlations and differences of the bacterial communities in the 

sediments of the nine sampling points were compared. As shown in Figure 3, the 

cumulative explained variation of the first axis and the second axis reached 41.93% and 

21.42%, respectively. The bacterial communities at different sampling points in Chagan 

Lake did not overlap significantly with each other and could thus be easily 

distinguished. From the perspective of bacterial community similarity, there were 

similarities in the bacterial community structure of the subsoil of the S7 and S9, S1, S5, 

and S2, and S1, S3, S6, and S8 sampling points, and therefore these sampling sites 

formed three distinct clusters (Figure 3). Overall, the community structure of bacteria in 

the sediments of different water depths was significantly different (PERMANOVA 

P<0.05), which indicated that the water depths had a significant effect on the bacterial 

community structure of the sediments. 

Analysis of bacterial community structure in Chagan Lake sediments 

A total of 5,362 OTUs were identified in the nine sampling points using high-

throughput sequencing, which encompassed 60 bacterial phyla (Figure 4(a)) and 1,077 

bacterial genera (Figure 4(b)). As illustrated in Figure 4(a), the main phyla in the soil 

samples included Proteobacteria (26%), Chloroflexi (14%), Acidobacteriota (10%), 

Actinobacteriota (9%), Desulfobacterota (8%), Bacteroidota (8%), and Cyanobacteria 

(7%). 
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Figure 3. Bacterial beta diversity in the sediments of Chagan Lake 

 

 

 

 

Figure 4. Bacterial phyla (a) and genera (b) level classification in sediments of Chagan Lake 



Du et al.: Changes in the bacterial community structure and diversity of Chagan Lake sediments, Northeastern China 

- 4264 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 20(5):4257-4270. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/2005_42574270 

© 2022, ALÖKI Kft., Budapest, Hungary 

Redundancy analysis of bacterial community and physicochemical properties in 

sediments of Chagan Lake 

The key environmental factors affecting the sediment bacterial community of 

Chagan Lake were further analyzed, and the soil fungal community structure and soil 

physicochemical properties were explored via redundancy analysis (Fig. 5). Our 

findings indicated that the cumulative explained variation of the two axes reached 

47.07%, and could thus reflect nearly 50% of the variation characteristics of soil 

bacterial communities and their influencing factors. Particularly, pH was the key 

environmental factor that dominated the bacterial community changes (R2 = 0.75, 

P = 0.01). 

 

Figure 5. Redundancy analysis of bacterial community and physicochemical properties in 

sediments of Chagan Lake 

 

 

The key environmental factors affecting the abundance of soil bacteria in the bottom 

of Chagan Lake were further analyzed, and the correlation between the horizontal 

abundance of soil fungi and soil physicochemical properties was determined (Fig. 6). 

Our findings indicated that the abundance of different bacterial phyla was affected by 

different environmental factors, among which WS4, WOR-1, Elusimicrobiota, 

Verrucomicrobiota, and Proteobacteria were significantly correlated with soil pH; 

Nitrospinota was significantly correlated with soil EC; Proteobacteria, Chloroflexi, 

Nitrospinta, MBNT15, WS2, Sumerlaeota, Caldisericota, Elusimicrobes, and 

Fibrobacteria were significantly correlated with C/N; Spirochaetota was significantly 

correlated with C, N, P; and Actinobacteriota was significantly correlated with soil C 

and P. 

Relationships between soil physicochemical properties and soil bacterial alpha 

diversity 

As summarized in Table 3, the correlation analysis between soil physicochemical 

properties and the alpha diversity of soil bacteria in the sediments indicated that the 
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Sobs index, Shannon index, Ace index, and Chao1 index were significantly positively 

correlated with the soil organic carbon in the sediments (P<0.05). However, there was 

no significant correlation between other indices and the physicochemical properties of 

the sediment. 

 

Figure 6. Correlation heatmap between soil physicochemical properties and soil bacterial 

phyla. Asterisk indicates significantly different at P <0.05 and P<0.01 

 

 
Table 3. Correlation coefficients between the soil physicochemical properties and soil 

bacterial α-diversity 

Alpha diversity TP TC TN C/N pH EC 

Sobs 0.441 0.985** 0.119 -0.090 -0.175 -0.371 

Shannon 0.563 0.720* -0.030 -0.108 -0.148 -0.037 

Simpson -0.378 -0.630 0.259 0.313 0.380 0.384 

Ace 0.242 0.955** 0.165 -0.065 -0.155 -0.347 

Chao1 0.212 0.948** 0.134 -0.085 -0.176 -0.310 

*P<0.05; **P<0.01 

 



Du et al.: Changes in the bacterial community structure and diversity of Chagan Lake sediments, Northeastern China 

- 4266 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 20(5):4257-4270. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/2005_42574270 

© 2022, ALÖKI Kft., Budapest, Hungary 

Functional annotation space of sediment bacteria 

Different types of sediment bacterial communities were predicted and analyzed by 

the FAPROTAX function prediction software to analyze the changes in the microbial 

function of the subsoil as shown in Figure 7. A total of 48 types of metabolic function-

related pathways were identified in all samples, among which 18 types of sediment 

bacteria were the main functional microorganisms in the nine sampling points (the 

relative abundance of functional gene sequences was >1%). As shown in Fig. 7, the 

functions with abundance rates greater than 10% among all samples included 

chemoheterotrophy, phototrophy, cyanobacteria, oxygenic_photoautotrophy, and 

photoautotrophy. Additionally, the functional structures of S1 and S8, S7 and S9, and 

S2, S3, S5, and S6 were similar. 

 

Figure 7. Prediction of FAPROTAX functions of soil bacteria in sediments of Chagan Lake at 

different locations 

 

 

Discussion 

Lake sediment is a unique biological environment that is characterized by the 

participation of various microorganisms, frequent exchange of substances, and high 

biological activity (Yang et al., 2018). Soil microbes possess complex metabolisms and 

reproduce rapidly and are thus considered a key component of soil ecology. However, 

these microbial communities are highly sensitive to external environmental 

disturbances. Water depth is a key factor affecting the ecological processes of lakes 

(Gutknecht et al., 2006), and many studies have demonstrated that changes in flooding 

degree can significantly affect soil microbial communities (Rees et al., 2006; Mentzer et 

al., 2006). Wang Peng et al. studied the characteristics of soil bacterial communities in 

the vegetation zone of Poyang Lake with different water levels and found that the soil 
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under the medium water level had a higher bacterial community abundance. Through 

the study of soil microorganisms in coastal reed wetlands under different flooding 

conditions, Zhang et al. (2017) reported that soil archaea and bacterial diversity were 

higher under flooding conditions. Zhang et al. (2016) studied the bacterial diversity in 

plant roots at different water level depths and found that the bacterial diversity in the 

plant roots decreased as water depth increased. Liu (2017) also demonstrated that water 

depth has a significant effect on bacterial community structures. Our findings indicated 

that different water depths had a significant impact on the bacterial community diversity 

in the sediment, which was consistent with the findings of Zhang et al. (2017) and 

Wang et al. (2016a). In this study, the bacterial diversity in the bottom sediment of 

Chagan Lake exhibited the following order: low water depth < medium water 

depth < high water depth. In other words, bacterial diversity was higher in deeper 

waters. The potential mechanisms that drive this phenomenon will be described below. 

Changes in water level conditions can directly change the living environment of the 

bacterial community in the sediment. Our findings indicated that the soil TP, TC, and 

TN contents in the deeper sampling points were significantly higher than those in the 

low- and medium-water levels. High nutrient conditions provide abundant carbon and 

nitrogen sources, thus promoting microorganism growth. From the perspective of the 

beta diversity of sediment bacteria, the bacterial community structure of sediments at 

different water levels was also significantly different. The bacterial community structure 

in the sediments of the S7 and S9, S1, S5, and S2, and S1, S3, S6, and S8 samples was 

similar. This was consistent with our bacterial alpha diversity results. That is, the soil 

richness, uniformity, and community structure of different sample sites varied 

significantly depending on the water level. Our findings demonstrated that the changes 

in microbial community abundance, diversity, and community structure composition in 

response to different water level conditions were largely the same. Deeper waters were 

associated with greater bacterial community abundance and diversity indices, and 

therefore water depth could be used as a predictor of bacterial diversity and abundance 

in Chagan Lake. Understanding the environmental changes caused by different water 

depths and submerged periods would provide a basis for the development of better 

management practices for the conservation of Chagan Lake. 

As the most important inland lake in Jilin Province, Chagan Lake is the largest lake 

in the Songliao Plain and an important fishery base in Jilin Province. The water quality 

of Chagan Lake is directly affected by the quality of its recharge sources (particularly 

the recharge water in the Qianguo Irrigation Area), as well as the water dynamics in the 

Songnen Plain and the lake area (Sun et al., 2011). The water quality of Chagan Lake 

has been steadily deteriorating each year, with decreases in dissolved oxygen 

concentrations and increases in pH and pollutant concentrations including nitrogen and 

phosphorus (Du et al., 2020). Recent studies have demonstrated that the water quality of 

Chagan Lake is close to the Class III standard and is in a state of mild eutrophication 

(Du et al., 2020). Water pollution leads to increased nutrient fluxes in river waters, 

destroys water ecosystems, and affects bacterial community compositions (Xue et al., 

2018). This study showed that the abundance of Proteobacteria in the bottom sediments 

of Lake Chagan was the highest (26%), followed by Chloroflexi (14%) and 

Actinobacteria (10%). This is consistent with a study by Wang et al. (2016b), where 

sediment bacteria from the bottom of the Hunhe river was dominated by Proteobacteria, 

as well as other bacterial taxa including Cyanobacteria and Bacteroidetes. Zhang et al. 

(2016) reported similar results in a study of lake sediments in Finland. Many studies 
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have shown that Proteobacteria have a high proportion in lake sediments (Yu et al., 

2020; Hu et al., 2021), and also have strong tolerance to polluted soils, so they are the 

dominant bacterial community in different lake sediments. Addition, there are a large 

number of aerobic or facultative bacteria in Proteobacteria, and the lake sediment has 

been in a state of high water level for a long time, and the relative abundance of 

Proteobacteria is less under the high water level conditions (Figure 4a); Chloroflexi is 

another dominant bacterial phylum, and the response of Chloroflexi to different water 

level conditions presents the characteristics of diversity. In our study, it was found that 

the largest abundance appeared at low water level (Figure 4a), this is due to the 

Chloroflexi are facultative anaerobic bacteria, relying on light energy for photosynthesis 

and anaerobic respiration under anaerobic conditions (Yu et al., 2020), so under low 

water level, the environment is more suitable for the growth of Chloroflexi. 

Actinobacteria is also one of the phyla with higher distribution in this study (Figure 4a). 

The reason may be the surface source pollution in Chagan Lake. Because 

Actinomycetes belong to Saprophytic bacteria can exist in polluted environments, so we 

speculate that the increase of Actinomycetes may be due to the influence of farmland 

and human activities around Chagan Lake, and a large amount of agricultural sewage 

and pesticides injected into the water body. Particularly, the sediments were mainly 

dominated by Proteobacteria, as well as Acidobacteria and Actinobacteria. However, 

different sites can have specific bacterial compositions. In this study, Desulfobacterota 

and Bacteroidota in S9 were more abundant than in other sampling points. S9 is located 

at the confluence of Chagan Lake and the Nenjiang River. The research site is seriously 

polluted by agricultural non-point sources and it is close to the saline-alkali area in 

western Heilongjiang. Therefore, the study area is affected by high saline-alkali water 

and water eutrophication, which might explain the high abundance of Desulfobacterota 

and Bacteroidota at this site. Different soil physicochemical properties can affect the 

bacterial community structure in sediments (Wang et al., 2016a). Our study 

demonstrated that EC, TC, and TN, as well as pH and C/N, were the main 

environmental factors that shaped the bacterial community structure of the Chagan Lake 

sediments at the phylum level (Figure 6). Wang et al. (2017) and Wang et al. (2018) 

studied the Poyang Lake estuary and found that the main environmental factor of 

microbial community structure was also pH. Previous studies of lake sediments in the 

United Kingdom (Wang et al., 2016b) and Qiantang River sediments in China (Liu et 

al., 2015) also reported that pH was the main factor that influenced bacterial community 

structure. Xue et al. (2021) also found that soil SOC, TN, and pH were the main factors 

affecting soil bacterial communities in Jialing River sediments. However, additional 

studies are needed to comprehensively explore the structure and diversity of bacterial 

communities at the genus level. Our study identified significant differences in the 

bacterial community structure of sediments depending on the sampling locations, 

suggesting that the structure of these bacterial assemblages responds to the 

environmental pressures of each location. 

Conclusion 

This study evaluated the variations in the bacterial community structure and diversity 

of Chagan Lake sediments collected at different points. Our findings indicated that the 

bacterial community diversity in the sediments of different points of Chagan Lake 

varied depending on the water depth, with higher diversity occurring in deeper sites. 
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The five dominant phyla in the sediment samples were Proteobacteria, Chloroflexi, 

Acidobacteriota, Actinobacteriota, and Actinobacteriota. However, the proportions of 

these and other phyla varied depending on the sampling site, thus demonstrating the 

influence of environmental characteristics on bacterial communities. Among these 

environmental factors, EC, pH, and TC had the most significant effects on bacterial 

community composition and diversity. Taken together, our findings provide key 

insights into the response of sediment bacterial communities to environmental factors 

and how these responses affect the functions of lake ecosystems, which is of great 

significance for the rational utilization of water and biological resources. 
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