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Abstract. This study proposes an enhanced cashew crop yield prediction precision model by incorporating 

key climatic factors with a major emphasis on wind speed, and wind direction. It employs ensemble deep 

learning models, including Bi-directional Gated Recurrent Unit (BiGRU) and Multi-Head Attention 

Mechanism (MHAtt), with data smoothing through the Savitzky Golay method. The ensemble models aim 

to capture diverse relationships, and global and local dependencies, and enhance generalization and 

interpretability in model ablation phases. Performance metrics, including MAPE, MAE, RMSE, R², and 

SHAP values, confirm the accuracy of the proposed model, achieving an impressive R² score of 0.87. The 

study explores how each model interprets feature engineering, emphasizing the role of environmental 

parameters, especially wind speed and wind direction. It also compared the remote data with ground-

measured data highlighting that remote sensing data remains reliable and valuable for various applications. 

This analysis contributes insights for improving cashew yield predictions and highlights the significance of 

feature engineering in ensemble deep learning models. 

Keywords: cashew, ensemble, multi-head, wind speed, wind direction, crop forecast 

Introduction 

The cashew tree (Anacardium occidentale L.) is native to Brazil and is a perennial nut-

bearing tropical plant that breeds in latitude 15° north and south of the equator. This 

research considers this crop because it is a multi-use tree crop with great economic value 

to third-world countries including Benin Republic, Brazil, Cote d’Ivoire, Guinea Bissau, 

Ghana, India, Mozambique, Nigeria, Philippines, Sri Lanka, Tanzania, Vietnam (Adeigbe 
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et al., 2015; Boafo and Lyons, 2021; UNCTAD, 2021; Hashmiu et al., 2022). Cashew 

crop farming although not intensively regularized in Ghana, provides jobs to thousands 

of people locally, especially the youth and women. The crop is estimated to be mainly 

cultivated by 1.5 million small-scale farmers (SNRD, 2019). Meanwhile, this crop has 

received little research in crop yield prediction using advanced deep-learning models 

(Balogoun et al., 2015; Das et al., 2022). Most of these researchers focused on 

conventional features that enable cashew crops to yield wholesomely. This motivated us 

to research yield prediction using advanced deep-learning models while using 

unconventional environmental features. 

Deep learning (DL) algorithms have undergone rapid evolution over the past three 

decades, yielding promising approaches that outperform traditional machine learning 

(Véstias et al., 2019). This evolution presents a unique opportunity to leverage 

agricultural statistics as training data directly, making deep learning a powerful tool in 

this domain (Zhong et al., 2019). However, choosing the best approach for time series 

forecasting among these techniques, often labeled as "black-box models," can be 

challenging. 

Artificial intelligence (AI) technology, mimicking human intelligence in technology, 

has become integral, gaining significant traction in hydrological forecasting (Ma et al., 

2022; Zhou et al., 2022; Sankalp et al., 2023). Cashew producers aiming for higher yields 

frequently encounter challenges related to climate, farming practices, the quality of 

expertise, and land topology (Chahal and Gulia, 2020; Feng et al., 2021). The accuracy 

of DL results relies on several factors (Nti et al., 2022), with a precise dataset being a 

critical consideration. Noise in data can stem from various sources, including 

measurement errors, data collection artifacts, and environmental factors. Techniques like 

Savitzky Golay, Fourier transforms, wavelet transforms, and statistical methods such as 

averaging or smoothing can be employed to address these challenges (Hastie et al., 2009; 

Witten et al., 2011). 

In this study, we conduct experiments using a multistate deep learning model with a 

cashew crop dataset. The employed models include the Bi-directional Gated Recurrent 

Unit (BiGRU) (Ali et al., 2018; Chu et al., 2019; Ye et al., 2024), and the Multi-Head 

Attention mechanism (MHAtt) (Vaswani et al., 2017). The objective is to identify the 

underlying effects of environmental parameters, especially wind speed and wind direction 

on cashew crops using these advanced multistate models. To enhance the dataset for 

improved model performance, we apply the Savitzky Golay filter as an initial 

preprocessing step. The primary aim of this filtering is to eliminate unwanted or random 

variations and errors that may be present in the data (Witten et al., 2011). Recognizing 

the type and sources of noise in a dataset is crucial for proper data preprocessing and 

analysis to reduce edge effects using polynomial fitting and approximation while boosting 

the computational efficiency of the ensembled model. The data is then smoothened and 

fed into various ensemble deep-learning models to uncover the intricate relationships 

between environmental parameters and cashew crop outcomes.  

Data accuracy and quality hinge on the reduction of noise, making it challenging to 

discern meaningful patterns or relationships (Witten et al., 2011). Employing data 

smoothing techniques, such as fitting a low-degree polynomial using Savitzky Golay to 

successive sets of data points, enables the removal of noise while preserving essential 

features although (Schmid et al., 2022) the Savitzky Golay is proposed to be replaced due 

to poor noise suppression. As noted by He et al. (2022); Song et al. (2022) and Sankalp 

et al. (2023), the Bi-directional Gated Recurrent Unit (BiGRU) emerges as a variant of 
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the GRU architecture. This integration allows for the bi-directional processing of 

sequential data, involving two parallel GRU layers running concurrently. This 

enhancement further augments the ability of the model to capture contextual information 

from both past and future sequences.  

Multi-head attention mechanism involves performing attention calculations multiple 

times in parallel, with each instance having its own set of learnable parameters (Kaur et 

al., 2023) Hence, the optimization of the model performance aimed to attain a satisfactory 

result. The integration of smoothed analysis, advanced RNN models, and a multi-head 

attention mechanism was strategically designed to leverage the effectiveness of these 

models. The objective was to underscore the impact of environmental parameters, 

including wind speed, wind direction, drought (Bediako-Kyeremeh et al., 2024), and soil 

moisture, on predicting cashew yield in Ghana. 

On the other hand, a Multi-Head Attention mechanism is an extension of self-attention 

where multiple sets of attention weights are computed in parallel (Vaswani et al., 2017). 

Each "head" learns different relationships and provides a different perspective on the data. 

The results from multiple heads are then concatenated or linearly combined to produce 

the final output (Vaswani et al., 2017). 

The accuracy of a model primarily relies on data precision, effective management of 

potential outliers, and normalizing the dataset to facilitate a well-fitted model for optimal 

learning. The rationale for this experiment can be summarized in three key aspects: 

• Improving data quality with Savitzky Golay Filter for smoothed data and mitigate 

edge effects although research proposes it be replaced due to its ineffectiveness. 

• Transferring the smoothed data into a multistate ensemble model for crop yield 

prediction in ablation 

• Understanding the environmental impact analyzed using a feature model, 

considering the impact of wind speed and wind direction in enhancing crop yield. 

Materials and Methods 

Data 

A multi-sourced dataset was employed, including data from the Ghana Meteorological 

Agency (GMet), which covered environmental parameters like meteorological drought 

resulting from extended periods of below-average precipitation. This led to a moisture 

deficiency, particularly affecting the chosen crop for this research, which thrives in semi-

arid regions. This dataset spans the period from 1999 to 2018, covering a 20-year 

timeframe and focusing on the three cashew-growing municipalities. 

Additionally, datasets related to cashew yield production were obtained from the 

Ministry of Food and Agriculture (MoFA)for the municipalities under study. The data 

collection aligned with the specified study period, and the targeted cashew growing areas 

included Jaman North, Jaman South, and Wenchi, spanning from 1999 to 2018. 

Remote sensing data for the three study areas was acquired from the Prediction of 

Worldwide Energy Resource | Data Access Viewer enhanced (POWER | DAVe, 2023). 

POWER | DAVe, a tool from NASA's POWER (Prediction of Worldwide Energy 

Resources) project, is a Data Access Viewer offering solar radiation and meteorological 

datasets from NASA research. These datasets are useful for applications like renewable 

energy, building energy efficiency, and agriculture (Rodrigues and Braga, 2021). The tool 

enables users to visualize, analyze, and download relevant climate data for their needs. 

These datasets were accessed in 2023. The dataset includes crucial weather parameters 
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such as soil moisture, wind speed at 2 m, and wind direction at 10m, spanning the study 

period from 1999 to 2018. These additional parameters are essential for assessing and 

promoting sustainable crop yield, including applications like eco-friendly or sustainable 

farming (van Delden et al., 2021). 

The environmental parameter selection criteria were based on several research 

focusing on conventional environmental parameters such as temperature, precipitation, 

evapotranspiration, humidity, and drought among others. Whereas little is research on 

wind speed and wind direction, we term these two parameters as unconventional 

environmental parameters. This is because cashew crops require effective crop pruning 

for airflow involves the deliberate removal of certain parts of a crop, such as branches or 

foliage, to improve airflow within the crop canopy. This practice is commonly employed 

in agriculture, especially in densely planted crops, to enhance ventilation, reduce 

humidity levels, prevent the development of diseases caused by poor air circulation, and 

increase yield (Bediako-Kyeremeh et al., 2024). 

Drought and soil moisture are crucial factors for growing cashew trees in semi-arid 

regions (Osibo et al., 2024). While cashew trees are relatively drought-tolerant, prolonged 

drought can stress the trees, reducing growth and yield, particularly during critical periods 

like flowering and fruiting. Drought can also encourage deeper root systems, which helps 

in accessing groundwater, but excessive drought can damage roots and reduce nutrient 

uptake (Sankalp et al., 2023). Consistent soil moisture is essential for nutrient absorption, 

overall tree growth, and productivity, especially for young trees. Proper soil moisture 

levels also improve nut size, weight, and overall yield (Balogoun et al., 2015; Bediako-

Kyeremeh et al., 2024). Fig. 1 demonstrates the effectuality of wind speed and wind 

direction as a plausible environmental parameter for cashew yield. 

 

Figure 1. Demonstrate the flowchart of the importance of wind speed and wind direction for 

sustainable cashew farming 

 

 

Study Area 

The study area encompasses coordinates 7°51'0" N and 2°31'60" W, situated in the 

Bono region of Ghana. Specifically, three districts Jaman North, Jaman South, and 

Wenchi were chosen for this research. These municipalities are renowned for their cashew 

production. Fig. 2 provides a visual representation of the study area. 
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Figure 2. Study area showing the three cashew-growing municipalities in the Bono Region 

(Jaman North, Jaman South, and Wenchi), within Ghana and the West African continent 

 

 

Data Preprocessing 

Savitzky Golay Smoothing 

The Savitzky-Golay filter for data preprocessing involves smoothing noisy data to 

reduce noise while preserving important features in the signal (Savitzky and Golay, 1964; 

Schmid et al., 2022). We intend to showcase the flexibility of the Savitzky-Golay filter 

in adjusting parameters like polynomial degree and window size. Additionally, Savitzky-

Golay highlights the filter's ability to mitigate edge effects through polynomial 

approximations, emphasizing its practical relevance in real-world data analysis. The 

results of the Savitzky Golay preprocessing from the original noise to the smoothed data 

are plotted. 

This function will return the smoothed data. The expression for Savitzky Golay is 

defined below in Eq.1: 

 

    .
k

smoothed i

i k

y n c y n i
=

= +
 

(Eq.1) 

 

where: 

ny
is the smoothed value at position n 

k represents the input signal values at positions n + i 

jc
are coefficients of the polynomial. 
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Deep Learning Models 

Bi-directional Gated Recurrent Unit 

BiGRU extends the basic GRU (Gated Recurrent Unit) by processing the input 

sequence in both forward and backward directions. In this work, we apply the current 

forward and backward hidden states which are calculated to represent the network's 

memory or internal representation of the input sequence and combined utilizing 

concatenation to produce the present hidden, this will enable the model to leverage 

information from both directions, providing a more comprehensive understanding of the 

input sequence. The adaptation of this model is to better understand the relationships and 

dependencies within the input data from the Savitzky-Golay filter output, leading to 

improved performance in prediction tasks. The mathematical expressions for the forward 

and backward GRU units in a BiGRU entire process as implemented by Qiao et al. (2023) 

can be defined as follows in Eq.2: 
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(Eq.2) 

 

where: 

th
represent the hidden state of the forward GRU at time step t. 

th represent the hidden state of the backward GRU at time step t. 

tx
represent the input at time step t. 

Multi-Head Attention Mechanism 

The capability of our model to jointly attend to information from another dimension, 

a multi-head attention mechanism is integrated into our model to learn patterns from 

targeted features (Vaswani et al., 2017), after modeling our data, concatenating results 

from the model, and evaluating results. The introduction of the multi-head attention 

allows the model to focus on different parts of the input sequence simultaneously, with 

each attention head attending to different aspects of the input, enabling the model to 

capture a diverse set of features and relationships within the data for expressive and robust 

representations. This is expected to improve learning and reduce attention redundancy by 

allowing heads to redundantly attend to the same information from different perspectives 

while capturing dependencies at different time scales. The multi-head attention 

mechanism can be mathematically expressed as follows in Eq.3: 

Linear Transformation of Q, K, and V: For each head "i" (where i ranges from 1 to the 

number of attention heads "h"): 

 

 ( , , ) max
T

i i
i i i i

k

Q K
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(Eq.3) 
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where: 

W_{Qi}, W_{Ki}, and W_{Vi} are learnable weight matrices specific to each attention 

head.}} 

Given an input sequence of queries (Q), keys (K), and values (V), where each of these 

is a matrix: 

Q: Query matrix of shape (batch_size, seq_length_q, d_model) 

K: Key matrix of shape (batch_size, seq_length_k, d_model) 

V: Value matrix of shape (batch_size, seq_length_v, d_model) 

where: 

batch_size: The number of examples in a batch. 

seq_length_q: The length of the query sequence. 

seq_length_k: The length of the key sequence (which might differ from seq_length_q). 

seq_length_v: The length of the value sequence (which might differ from seq_length_q). 

d_model: The dimensionality of the input embeddings. 

Model Construction 

Our model construction involved several key components, starting with Savitzky-

Golay preprocessing, followed by the incorporation of BiGRU (Bidirectional Gated 

Recurrent Unit), and a Multi-Head Attention Mechanism. For data preprocessing using 

the Savitzky Golay filter, aiming to smooth and reduce noise in our cashew and 

environmental parameter time series data. We determined the Savitzky-Golay filter 

parameters with window size (5) since larger windows preserve more features but may 

smooth less, while smaller windows provide stronger smoothing. The polynomial degree 

and Derivative order were set to (2) respectively. This degree affects the smoothness of 

the fitted curve. The savgol_filter function was used to apply the Savitzky-Golay filter to 

our cashew noisy data. The time series input with a shape of (timesteps, and features). 

The Conv1D layer with linear activation serves as a Savitzky-Golay filter. 

The introduction of BiGRU allowed the model to capture information from both past 

and future sequences, utilizing 32 units. A tanh and sigmoid activation function and 

recurrent activation respectively. The BiGRU layer had a bias input shape of (420, 5), a 

dropout rate of (0.2), and a concatenating merge mode. The Multi-Head Attention 

Mechanism layer was then employed to enable the model to focus on different segments 

of the input sequence simultaneously. This enhanced the model's ability to capture 

complex patterns, transitioning from the BiGRU layer to generate a final regression 

output. We applied (5) heads, Key, Value and Query Dimensions 

(sequence_length = 420), (feature_dim =128), (num_heads = 5), (head_dim = 32). We 

maintained the attention dropout rate at (0.2). The model was compiled and trained using 

the Adam optimizer algorithm and Mean Squared Error (MSE) as the loss function. 

For the training process, we utilized a test-train split of the dataset with a random state 

of (42), a test size of (0.2), and (5) epochs. After training, we employed SHAP values for 

model interpretability, providing insights into the influence of each feature on the model's 

predictions. Additionally, traditional evaluation metrics such as MAPE, MAE, MSE, R², 

and RMSE were employed to assess the overall performance of our predictive ensemble 

model. Fig. 3 illustrates the proposed ensembled model composition. 
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Figure 3. Savitzky Golay- BiGRU-Multi-Head Attention Mechanism model architecture 

 

 

Evaluation Metrics 

Model performance was analyzed using regression metric tasks such as: 

Root Mean Square Error (RMSE). RMSE applied to achieved results can be expressed 

in Eq.4 as: 
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(Eq.4) 

 

where:  

n is the of observations 

Pi is the simulated (predicted) value for the i-th observation. 

Oi is the observed value for the i-th observation. 

Coefficient Determinant (R2): The R2 can be expressed below in Eq.5: 
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(Eq.5) 

 

where:  

n is the number of observations 

Yi is the observed value for the i-th observation 

ŷi is the predicted value for the i-th observation 

y̅i is the mean of the observed values. 
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Mean Absolute Error (MAE): MAE was instrumental in achieving our results and be 

expressed in Eq.6 below: 
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| |
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i ii
y x
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n

=
−

=
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(Eq.6) 

 

where: 

|yi-xi| = absolute errors and  Ʃ = summation symbol 

Mean Absolute Percentage Error (MAPE): Interpreting our results using MAPE can 

be expressed mathematically below in Eq.7: 
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(Eq.7) 

 

 

Results 

In this section, we discuss the results accomplished from this research. These results 

comparatively show how with and without ensembled deep learning models combined 

with multi-head attention mechanisms and a Savitzky Golay smoothed analysis yield 

positive on cashew yield production dataset and climatic factors. Fig. 4 visually displays 

the results of selected dataset features before and after Savitzky Golay smoothed data 

analysis. The analysis involved the application of smoothed data using the Savitzky Golay 

filter on selected features, including soil moisture drought, wind speed, and wind 

direction. This process aimed to diminish data noise while retaining crucial features. It 

achieved this by fitting a low-degree polynomial within a given range and utilizing the 

polynomial coefficients to forecast the smoothed value at essential points. 

 

Figure 4. Savitzky Golay smoothed data analysis of selected features of the dataset 
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Fig. 4 visualizes four plots showing both the original (blue) and smoothed (red) data 

for wind speed, wind direction, drought, and soil moisture over a 10-unit period. The wind 

speed plot exhibits high variability in the original data, with the smoothed line revealing 

general trends more clearly. The wind direction plot shows similar behavior, with 

significant fluctuations in the original data and clearer patterns in the smoothed line. The 

drought data is erratic, but the smoothed line highlights underlying trends. Lastly, the soil 

moisture plot displays high variability in the original data, with the smoothed data 

providing a clearer trend. The significance of the Savitzky Golay smoothed data aside 

from noise reduction provides an avenue of parameter tuning and reduces edge effects 

with its polynomial approximations and computational efficiency. The data points for the 

selected features are strategically positioned around the central point. The results 

demonstrate a balance between the smoothed and captured local variations. This is 

considered effective when dealing with signs that demonstrate both smooth trends and 

rapid variation. This methodology aligns with the approach employed by Cao et al. (2018) 

who utilized the Savitzky Golay filter to enhance the quality of NDVI time-series data by 

incorporating spatiotemporal information. 

The primary objective of this research was to predict cashew yield, employing various 

ensemble deep learning models such as BiGRU, Savitzky Golay-BiGRU, and Savitzky 

Golay-BiGRU-Attention Mechanism with emphasis on wind speed and wind direction. 

The focus was on determining the most effective ensemble deep learning model with and 

without smoothed data. Table 1 provides an ablation of a comprehensive overview of the 

experimental results, utilizing evaluation metrics such as MAPE, MAE, RMSE, and R² 

to comprehensively showcase the model performance. 

 
Table 1. Comparison of overall model performance using evaluation metrics with other 

predictive models (Ablation) 

Individual Deep Learning Model 
Performance Evaluation Matrics 

MAE R2 RMSE MAPE 

BiGRU 1.86 0.6810 0.772 8.121% 

Ensembled Model     

Savitzky Golay-GRU-BiGRU 1.52 0.826 0.8301 5.62% 

Savitzky Golay-BiGRU-Multi-Head Attention 

Mechanism (Our Model) 
0.1766 0.8705 0.9822 3.91% 

 

 

In contrast, our model, incorporating Savitzky Golay, BiGRU, and a multi-head 

attention mechanism, demonstrated superior performance compared to the ensemble 

model featuring Savitzky Golay, and BiGRU only. This improvement can be attributed 

to the inclusion of Savitzky Golay and the attention mechanism, which enables the model 

to selectively focus on different segments of the input sequence with varying levels of 

attention to smoothed data (Vaswani et al., 2017). 

Several studies, including those by He et al. (2022); Kaur et al. (2023); and Sankalp et 

al. (2023), have employed BiGRU, and attention mechanisms in predicting vegetation 

and yield. However, these authors did not consider the influence of wind speed and wind 

direction, in addition to drought and soil moisture. These environmental parameters have 

been the focus of numerous research endeavors aimed at determining their effectiveness 

in the prediction of agricultural outcomes. 
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Savitzky and Golay (1964) advocate for the adoption of a simplified least squares 

procedure to preprocess datasets, effectively smoothing and distinguishing noise from 

genuine data. This process ensures that the data is in an optimal state for subsequent 

modeling. The effectiveness of this approach is supported by compelling results, as 

reflected in evaluation metrics such as the Mean Absolute Percentage Error (MAPE), 

indicating the accuracy of the predictive model. About Table 1, where a MAPE of 3.91% 

was achieved, this value is indicative of a highly accurate model. Our model's predictions 

closely align with the actual values, as evidenced by the low MAE (0.1766), high R² 

(0.87), and low RMSE (0.9822) scores, affirming the model's precision in predicting 

outcomes. Notably, when compared to two other contemporaneous models that were 

independently experimented with the same computational requirements and dataset, our 

Savitzky Golay-BiGRU-Attention Mechanism model outperformed them. Fig. 5 visually 

represents the performance of the Savitzky Golay-BiGRU-Attention Mechanism model, 

specifically highlighting the Multi-Head Attention Mechanism. The regression chart in 

Fig. 5 demonstrates the proximity of data points on both sides of the regression line, 

illustrating a close correspondence between predicted and actual values. 

 

Figure 5. Regression line chart of overall model (Savitzky Golay-BiGRU-Multi-Head Attention 

Mechanism) performance 

 

 

Fig. 5 visualizes four regression plots depicting the relationships between epochs and 

various environmental parameters: wind speed, wind direction, drought, and soil 

moisture. Each plot includes a regression line, indicating positive linear trends for all 

parameters: (y = 2.2x + 7.68) for wind speed, (y = 2.5x + 8.33) for wind direction, 

(y = 2.4x + 53.84) for drought, and (y = 2.2x + 7.0) for soil moisture. These positive linear 

relationships suggest that these environmental factors increase over time, which is crucial 

for improving the accuracy of predictive models. 
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Detailed results are documented in Table 2, where individual municipalities like Jaman 

North, Jaman South, and Wenchi underwent assessment using evaluation metrics such as 

R2 to provide a comprehensive overview of the model's performance. 

 
Table 2. Individual municipalities' performance of dependent and independent variables 

Municipalities Performance Evaluation (R2) 

Jaman North 0.8 

Jaman South 0.91 

Wenchi 0.882 

 

 

Validating remote data with ground-measured data is essential for ensuring the 

accuracy, reliability, and utility of remote sensing technologies. This validation process 

builds confidence in the data and models derived from remote sensing, ultimately 

enhancing their application across diverse fields. Fig. 6 visualizes the validation of remote 

data and ground-measured data correlation. 

 

Figure 6. The line chart displays the correlated remote and ground-measured data for the four 

variables (wind direction, wind speed, drought index, and soil moisture) over 20 years 
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Fig. 6 presents four graphs showing the correlation of remote data and ground-

measured data over the period from 1999-2018 for selected environmental parameters 

such as wind direction, wind speed, drought index, and soil moisture. Each plot includes 

a regression line with its equation and a legend to illustrate the correlation visually. 

Discussion 

The study's innovative use of ensemble deep learning models, including Bi-directional 

Gated Recurrent Unit (BiGRU) and Multi-Head Attention Mechanism (MHAtt), 

effectively captures these trends, enhancing the precision of cashew crop yield 

predictions. The integration of data smoothing techniques like the Savitzky Golay method 

further contributes to the model's robustness and reliability. This approach validates the 

inclusion of specific climatic factors and highlights the potential of advanced deep-

learning models to interpret complex environmental data, providing valuable insights for 

agricultural forecasting and decision-making. The evaluation metrics, MAPE and MAE, 

were chosen with specific objectives. R² aims to provide an interpretable scale in the same 

units as the target variable, indicating the proportion of variance explained by the model. 

On the other hand, MSE puts more emphasis on large errors than MAE. It is worth 

highlighting from Table 1 that our newly suggested model achieved superior prediction 

accuracy compared to our other predictive models. The incorporation of the Savitzky-

Golay filter aimed at refining the data and enhancing its features resulted in an improved 

performance. Notably, the noise suppression was not prominently evident, but the 

obtained results proved to be beneficial, as reported (Schmid et al., 2022), We highly 

recommend the utilization of the Savitzky-Golay filter, as it possesses the capability to 

enhance data, yielding meaningful and significant results. In Table 2, the model 

performance for Jaman South exhibited an R² score of 0.91, suggesting that 

approximately 91% of the variance in the dependent variable is explained by the model, 

this is generally considered a strong fit. For Wenchi, the R² score of 0.882 indicates that 

88.2% of the variance in the dependent variable is explained, demonstrating a good fit, 

albeit slightly lower than Jaman South. Lastly, Jaman North achieved an R² score of 0.8, 

explaining approximately 80% of the variance in the dependent variable. It's important to 

note that R² values closer to (1) signify a better fit of the model to the data. The total R² 

score represents the average goodness of fit across the three municipalities. Figs. 7, 8, 

and 9 visualize the feature trends and patterns from Table 2 in a column chart. The 

selected environmental features such as wind direction, wind speed, drought, and soil 

moisture are highlighted as factors influencing cashew crop yield in individual 

municipalities. 

In Fig. 6 Wind Speed (a) showed a regression line equation is y=0.80x+0.06y 

indicating a strong positive correlation between remote and ground-measured data points. 

Wind Direction (b) also shows a strong positive correlation with a regression line equation 

of y=0.80x+0.81, Drought Index with y=0.80x+0.74, signifying a robust positive 

correlation and Soil Moisture (d) explained with a regression line y=0.80x+0.23, 

reflecting a strong positive correlation as well. These selected environmental feature plots 

demonstrate that remote data is consistently aligned with ground-measured data, 

validating the reliability of remote sensing for monitoring and predicting environmental 

parameters over the two-decade period. 
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Figure 7. (a)-(d). Column chart showing feature trends and patterns of Jaman North 

Municipality 

 

 

Figure 8. (a)-(d). Column chart visualizing feature trends and patterns of Jaman South 

Municipality 

 

 

Figure 9. (a)-(d). Column chart visualizing feature trends and patterns of Wenchi Municipality 

 

 

The consistency in data points around the regression lines underscores the accuracy of 

remote sensing, essential for applications in weather forecasting, agricultural planning, 

water resource management, and disaster preparedness. Validation with ground-

measured data ensures the credibility of remote sensing, helping to detect and correct any 

biases, thus enhancing the reliability of these data for practical use (Gella et al., 2021). 

While exact matching is not required, the consistent trends observed validate the 

applicability of remote data in various fields, contributing to more informed decision-

making and efficient resource management (Arshad et al., 2023). These differences can 
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lead to variations in data, as remote sensors might average values over larger scales, 

whereas ground measurements offer point-specific precision. Additionally, the need for 

regular calibration and validation of remote sensors against ground-truth data can 

contribute to discrepancies if calibration is insufficient or ground-truth data are sparse 

(Birungi et al., 2024; Tian et al., 2021). Despite these challenges, the discrepancies can 

positively impact research by driving the refinement of remote sensing models and 

enhancing data integration. Combining the strengths of both remote and ground data leads 

to a more comprehensive understanding of environmental conditions, improved 

validation frameworks, and broader applications across fields such as agriculture, 

forestry, and climate science. This iterative process ensures that remote sensing data 

remains reliable and valuable for various applications (Osibo, Ma, Bediako-Kyeremeh, 

et al., 2024; Zhong et al., 2019). 

In the context of cashew yield, it is crucial to identify multiple factors that influence 

the outcome. Numerous environmental parameters, including evapotranspiration, 

temperature, precipitation, radiation, and NDVI (Normalized Difference Vegetation 

Index), among others, are commonly examined by researchers. These factors play 

significant roles in understanding and predicting cashew crop yields as claimed by Basso 

and Liu (2019); Khaki and Wang (2019); Nigam et al. (2019); Khaki et al. (2020); 

Keerthana et al. (2021); and Bhimavarapu et al. (2023). The primary focus of this research 

was to concentrate on four specifically chosen features that have both direct and indirect 

impacts on the yield of cashew crops in semi-arid regions. The aim was to highlight the 

positive effects that these selected features contribute to cashew yield in Ghana. 

To establish this concept, Figs. 7(a,b), 8(a,b), and 9(a,b) were utilized to compare the 

effects of wind direction and wind speed over the study periods for each of the three 

individual studies. The results indicated that our Savitzky Golay-BiGRU-Multi-Head 

Attention Mechanism model exhibited significant occurrences of wind direction and wind 

speed during periods of pronounced production. This reinforces the notion that both wind 

speed, measured in kilometers per hour (km/h), and wind direction, observed using 

cardinal degrees (°) of southwest winds, suggest wind conditions that are considered not 

too strong (Tempest, 2023). Hence, the cashew crops experienced favorable winds 

conducive to progressive yields over the specified periods. This observation aligns with 

findings from previous research (Kalantari et al., 2018; Beacham et al., 2019; van Delden 

et al., 2021) this underscores the importance of embracing sustainable farming practices 

that incorporate environmental parameters throughout the cultivation, harvesting, and 

post-harvest periods of cashew crops. Figs. 7, 8, and 9 elucidate various trends observed 

in the results of the study area, particularly about selected environmental features. The 

analysis of these environmental feature trends was juxtaposed against production data 

from the respective study areas. Notably, when examining the correlation between wind 

direction and production, Jaman South demonstrated a positive trend in production as 

opposed to Jaman North and Wenchi. 

There is existing research that delves into the impact of wind speed on crop yield, 

emphasizing the significance of considering such environmental factors in agricultural 

practices. Balogoun et al. (2015) considered the influence of wind speed on crop yield 

along with other environmental parameters, there has been a notable gap in considering 

the direction of the wind, which is intricately linked to the speed of the wind. This 

emphasizes the need for comprehensive analyses that encompass both wind speed and 

wind direction for a more thorough understanding of their combined effects on 

agricultural outcomes. In the work (Das et al., 2022) findings concluded that the 
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combined model, formed through an ensemble of deep learning techniques, did not 

surpass the performance of an individual model in predicting cashew yield. Nevertheless, 

this study utilized an ensemble deep learning model employing a bagging strategy, 

coupled with dataset preprocessing, and smoothing using Savitzky Golay. This 

meticulous process aimed to mitigate noise and enhance the overall quality of the data, 

thereby contributing to improved results from the ensemble model. 

That notwithstanding, it has been researched that cashew yield is excellent in certain 

soil properties (Adeigbe et al., 2015; Balogoun et al., 2015; Okeke and Akarue, 2018; 

Boafo and Lyons, 2019; Das et al., 2022) soil drought and soil moisture are peculiar 

properties of cashew crops due to a soil texture of semi-aridness. Figs. 7(c, d), 8(c, d), 

and 9(c, d) our ensembled deep learning model visualizes the soil drought and soil 

moisture which forms a necessary soil texture for cashew crops over the three study areas 

with cashew production over twenty years. It was evident that in all three study areas, our 

ensembled deep learning model demonstrated the soil drought was in good soil texture 

necessary for cashew crop growth while the amount of water needed for the cashew crop 

to yield was in good proportion as made evident by our Savitzky Golay-BiGRU-Multi-

Head Attention Mechanism model. Although, at one point the model depicted no record 

for certain features at a period these occurrences were slightly insignificant compared to 

the significance recorded by the model. In general, the trends observed in Figs. 7, 8, and 9 

indicate that an upswing in both wind speed and wind direction, falling within an optimal 

wind velocity range, correlates with an augmented yield. Additionally, a moderate rise in 

moisture levels exhibits a noteworthy increase in yield (Mamelona et al., 2024; Osibo, 

Ma, Bediako-Kyeremeh, et al., 2024). Moreover, yield experiences growth when soil 

drought decreases below zero. Instances where zero features were recorded, resulted in 

zero production, underscoring the significance of these selected environmental variables 

in cashew nut production. 

Moreso, we opted to conduct a detailed analysis of our ensemble deep learning model's 

performance using SHAP (SHapley Additive exPlanations) values. SHAP values are 

widely recognized and powerful tools in the realm of explainable artificial intelligence 

(XAI), offering a cohesive measure of feature importance. Illustrated in Fig. 10(a)-(c), 

11(a)-(c), and 12(a)-(c) the SHAP values chart assigns a specific value to each feature for 

a given prediction, highlighting the contribution of that feature to the model's output. 

Special emphasis is placed on selected environmental features and their impact on cashew 

crop production across the three study areas.  Throughout the three study areas, the SHAP 

values chart demonstrates the impact of each specific feature on the model's output, with 

a focus on their respective mean averages and importance on model output. Figs. 10, 11, 

and 12 strike a balance between local interpretability, elucidating individual predictions, 

and global interpretability, providing a comprehensive understanding of the overall model 

behavior. The insights gleaned from SHAP values contribute to the interpretation of our 

model predictions. The prevailing factors influencing high cashew yields in Jaman South 

are identified as wind speed and wind direction, distinguishing it from Jaman North and 

Wenchi. This suggests that the soil moisture level is conducive for optimal cashew 

production. Analyzing the current data trends and the SHAP feature importance of 

Wenchi, it is evident that Wenchi is currently leading in production due to soil moisture. 

Nevertheless, the data indicates a promising outlook for Jaman South to surpass in the 

coming years, as illustrated by the SHAP values in Fig. 11(a)-(c). 
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The novelty of this research lies in its comprehensive approach to enhancing cashew 

crop yield prediction by integrating key climatic factors, particularly wind speed and wind 

direction, which are often neglected in traditional models. 

 

Figure 10. (a)-(c). SHAP values chart for impact on model output for selected features for the 

three study areas with individual BiGRU Models 
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Figure 11. (a)-(c) SHAP values chart for impact on model output for selected features for the 

three study areas with individual  Savitzky Golay-BiGRU Model 

 

Figure 12. (a)-(c) SHAP values chart for impact on model output for selected features for the 

three study areas with individual Savitzky Golay BiGRU Model-Multi-Head Attention 

Mechanism ensembled model 
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The study employs advanced ensemble deep learning models, specifically Bi-

directional Gated Recurrent Unit (BiGRU) and Multi-Head Attention Mechanism 

(MHAtt), combined with data smoothing using the Savitzky Golay method to reduce 

noise and improve data quality. These innovations collectively improve the precision of 

cashew yield predictions and provide valuable insights into the integration of wind speed 

and wind direction as environmental parameters and advanced deep-learning techniques 

in agricultural forecasting. 

Conclusion 

This research concentrated on the examination of a dataset concerning cashew 

production and specific environmental variables, such as wind direction, wind speed, 

drought, and soil moisture. While previous studies have extensively modeled parameters 

like drought and soil moisture in crop yield analyses using various statistical, machine 

learning, and deep learning models, there has been limited attention given to the influence 

of wind speed and direction on cashew crop yield. 

The results obtained from our proposed Savitzky Golay-BiGRU-Multi-Head Attention 

Mechanism model highlight the significance of data smoothing for subsequent analyses, 

where the preprocessing provides meaningful trends and rapid variations in time series 

dataset prediction especially crop yield. Utilizing ensemble deep learning models within 

a bagging strategy to augment the preprocess capability to enhance computational 

efficiency. These findings carry positive implications for stakeholders involved in 

decision-making processes regarding crop yield for sustainable farming. Subsequent 

research will prioritize the optimization of this model through meta-learning, enabling it 

to adeptly adjust to new tasks with a reduced set of features, not exclusively confined to 

wind speed and wind direction to explore predictive powers of other smoothing models 

fused with learning models. 
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