
Lu et al.: Analysis of the spatiotemporal evolution characteristics and spatial heterogeneity driving mechanisms of regional PM2.5 

based on MGWR: a case study in Central China 
- 359 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(1):359-385. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2301_359385 

© 2025, ALÖKI Kft., Budapest, Hungary 

ANALYSIS OF THE SPATIOTEMPORAL EVOLUTION 

CHARACTERISTICS AND SPATIAL HETEROGENEITY DRIVING 

MECHANISMS OF REGIONAL PM2.5 BASED ON MGWR: A 

CASE STUDY IN CENTRAL CHINA 

LU, B. – ZHANG, M. C.* – WANG, Y. W. – WANG, K. D. – LI, X. F. – WANG, H. 

School of Computer Science and Technology, Zhengzhou University of Light Industry, 450000 

Zhengzhou, China 

*Corresponding author 

e-mail: yanzhi_zmc@163.com 

(Received 21st May 2024; accepted 18th Oct 2024) 

Abstract. The presence of particulate matter smaller than 2.5 µm (PM2.5), one of the major air 

pollutants, exerts a significant detrimental impact on human health, the natural environment, and the 

sustainable development of society and the economy. Consequently, it has become imperative to conduct 

comprehensive research on its spatiotemporal evolution characteristics as well as the underlying driving 

factors. In order to comprehensively investigate the spatiotemporal evolution of PM2.5 and elucidate the 

underlying driving mechanisms considering spatial heterogeneity, this study utilized 22 years of remote 

sensing data on PM2.5 in central China to establish a standard deviation ellipse model and conduct spatial 

autocorrelation analysis. Additionally, it integrated normalized difference vegetation index (NDVI), gross 

domestic product (GDP), and other factors to construct a multi-scale geographical weighted regression 

model (MGWR). The findings are as follows: (1) Over the past 22 years, the annual average 

concentration of PM2.5 in central China has generally declined, but most of Henan Province and central 

Hubei Province remain key areas of PM2.5 pollution. (2) Spatially, there is evident aggregation of PM2.5 

concentration, with hot spots predominantly concentrated in Henan Province and cold spots mainly found 

in Hunan Province. (3) The precision of spatial data can have a certain degree of impact on the results of 

driving models. Compared to GWR, MGWR can more effectively capture the spatial heterogeneity of 

influencing factors at different scales. (4) Varying degrees of spatial heterogeneity are indicated by the 

results that are obtained from the MGWR in different factors impacting PM2.5 concentration in Central 

China. Therefore, it is crucial to consider spatial heterogeneity when modeling and analyzing data with 

spatial attributes. 
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Introduction 

The advancement of the economy and the enhancement of people’s living standards 

have led to an increasing public concern for ecological safety. Air pollution poses a 

significant challenge that humanity must confront during the process of 

industrialization. The atmospheric pollutant PM2.5 is widely recognized as a 

significant contributor to environmental degradation and poses serious threats to 

human health (Chen et al., 2020; Yang et al., 2022b). The term “PM2.5” refers to 

airborne particles with an aerodynamic equivalent diameter of 2.5 microns or less in 

ambient air. These particles have the ability to remain suspended in the air for 

extended periods, and as the concentration of these particles increases, so does the 

severity of air pollution. Therefore, it is imperative to conduct in-depth research on 

the spatiotemporal evolution characteristics and associated driving factors of PM2.5, 

considering both public health implications and the sustainable development of 

society and the environment. 
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From the perspective of study area and scale, numerous scholars both domestically and 

internationally have conducted analyses on the spatiotemporal distribution patterns of 

PM2.5 as well as its associated driving factors across various spatial scales. Consequently, 

a comprehensive multi-scale research framework has been established encompassing 

countries (Xie et al., 2016; Lin et al., 2014; He et al., 2021), river basins (Jiang et al., 

2021; He et al., 2019; Zhao et al., 2022), urban agglomerations (Shen et al., 2019; Huang 

et al., 2021; Liu et al., 2020), provinces (Gu et al., 2010; Zhang et al., 2020; Huang et al., 

2020), and prefecture-level cities (Yang et al., 2022a; Fang et al., 2016; Wang et al., 

2023). However, the majority of these studies primarily focus on the relatively developed 

regions within China. Central China, with its large population and status as one of China’s 

important economic regions, has experienced higher levels of PM2.5 pollution compared 

to other regions. Given the prominent position that the state has placed on the construction 

of ecological civilization, addressing atmospheric environmental pollution is crucial for 

both public health and sustainable economic development. 

From the perspective of research methods and directions, in terms of analyzing the 

spatiotemporal distribution characteristics of PM2.5, scholars primarily investigate its 

change patterns over time and space, as well as its spatial correlations through various 

methodologies such as yearly and monthly data analysis, changes in spatial center of 

gravity, spatial hot spot analysis, among others (Yan et al., 2022; Zhu et al., 2022; Fan et 

al., 2017; Yuan et al., 2021; Wang et al., 2022). Among these mechanisms, the 

modification in gravity’s spatial center can be effectively determined utilizing the standard 

deviation elliptic (SDE) model (Shi et al., 2018), which not only calculates the spatial 

center of the concentration but also accurately reflects directional distribution of PM2.5 

across space. Regarding the analysis of PM2.5 driving mechanisms, currently employed 

modeling methods can be categorized into traditional techniques like ordinary least squares 

analysis (Fang et al., 2020), rank correlation analysis (Chang et al., 2017), grey correlation 

analysis (Ouyang et al., 2018), etc., along with approaches from a spatial perspective such 

as residual analysis (Tu et al., 2021), spatial Durbin model (Chen et al., 2019), and 

geographical weighted regression (GWR) model (Luo et al., 2017). The PM2.5 

concentration, being a data with spatial properties, exhibits distinct spatial heterogeneity in 

its relationship with various influencing factors (Wang et al., 2020). Sources of PM2.5 

pollution encompass both natural and anthropogenic origins. Natural sources include 

volcanic eruptions, forest fires, hurricanes, tsunamis, weathering of soil and rocks, and 

biological decay, which contribute to the introduction of fine particles into the atmosphere 

as part of PM2.5. Anthropogenic sources primarily stem from human activities and 

industrial production processes and serve as the main contributors to PM2.5 levels. 

Simultaneously, both the natural environment and human intervention can mitigate PM2.5 

pollution through various means. To effectively curb PM2.5 pollution requires 

understanding the relationship between PM2.5 concentration and its associated influencing 

factors. At the same time, the natural and socio-economic influencing factors of PM2.5 

concentration are also data with spatial properties. Hence, it is crucial to unveil the effect 

of spatial heterogeneity in driving factors when analyzing the mechanism behind PM2.5. 

The multi-scale geographical weighted regression (MGWR) model is an enhanced version 

of GWR that incorporates the spatial heterogeneity of drivers and their functions 

(Fotheringham et al., 2017), offering a novel approach to modeling spatial data drivers. 

In summary, this study focuses on Central China as the research area and utilizes 

22 years of PM2.5 remote sensing data and high-resolution raster data of impact factors 

to analyze the spatiotemporal distribution characteristics of PM2.5 using SDE. 
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Additionally, it investigates the spatial aggregation patterns of PM2.5 through spatial 

autocorrelation and hot spot analysis. Furthermore, the MGWR is employed to uncover 

the influence of driving factors on the distribution and spatial heterogeneity of PM2.5, 

thereby providing valuable insights for analyzing PM2.5 pollution and formulating 

atmospheric environment policies. 

Materials and methods 

Study area 

Central China encompasses Henan, Hubei, and Hunan provinces. Spanning over 

560,000 km2, it accounts for approximately 5.9% of the country’s total land area. With a 

robust industrial foundation and advanced agricultural production capabilities, Central 

China serves as a vital energy and raw materials base while also functioning as an 

extensive transportation hub. The region is abundant in human resources and scientific 

educational facilities that significantly influence China’s overall economic 

development. With the implementation of the Central China Rise strategy, its economy 

has experienced rapid growth, establishing itself as a pivotal region for industrial 

advancement in the country. However, amidst this progress lies a pressing concern 

regarding air quality in Central China; thus, necessitating further strengthening of 

environmental governance. The study area is shown in Figure 1. 

 

 

Figure 1. Geographical location and administrative divisions of Central China 

 

 

Data source 

PM2.5 data 

The PM2.5 raster data acquired through remote sensing inversion are sourced from 

the Atmospheric Composition Analysis Group at the Washington University in St. 
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Louis (V5.GL.04). The data has a spatial resolution of 1 km × 1 km, enabling a more 

accurate representation of the actual spatial distribution of PM2.5. 

 

Other data 

In order to analyze the driving mechanism of PM2.5 spatial concentration, this study 

incorporated two types of impact factor data: natural and socio-economic data. The 

natural data encompass air temperature, vegetation index, average wind speed, relative 

humidity, elevation, and precipitation. Socio-economic data encompass night lighting, 

CO2 emissions, electricity consumption, population density, GDP, and proportion of 

arable land. The data sources and their corresponding descriptions are presented in 

Table 1. 

 
Table 1. Influencing factors and description of PM2.5 concentration 

Type Factor Description and data source 

Natural factors 

X1: air temperature 
Average annual temperature at 1 km × 1 km resolution/℃ 

(https://cstr.cn/18406.11.Meteoro.tpdc.270961) 

X2: vegetation index 
Vegetation index at 1 km × 1 km resolution/NDVI 

(https://modis.gsfc.nasa.gov/data/dataprod/mod13.php) 

X3: wind speed 

Average annual wind speed at 1 km × 1 km resolution/(m/s) 

(http://www.geodata.cn/data/datadetails.html?dataguid=3796

451&docid=5735) 

X4: relative humidity 

Relative humidity at 1 km × 1 km resolution/(kg/kg) 

(http://www.geodata.cn/data/datadetails.html?dataguid=1269

28059243667&docId=11969) 

X5: elevation 
Elevation at 1 km × 1 km resolution/(m) 

(https://www.gscloud.cn/) 

X6: precipitation 

Precipitation at 1 km × 1 km resolution/(mm) 

(http://www.geodata.cn/data/datadetails.html?dataguid=2329

433&docId=7668) 

Socio-economic 

factors 

X7: nighttime light 

Nighttime light at 1 km × 1 km resolution/(LUX) 

(https://data.tpdc.ac.cn/zh-hans/data/e755f1ba-9cd1-4e43-

98ca-cd081b5a0b3e) 

X8: CO2 emission 
CO2 emission at 1 km × 1 km resolution/(tons/ km²) 

(https://cger.nies.go.jp/en/) 

X9: electricity 

consumption 

Electricity consumption at 1 km × 1 km resolution/(Kwh) 

(https://www.nature.com/articles/s41597-022-01322-5) 

X10: population density 
Population density at 1 km × 1 km resolution/(persons/ km²) 

(https://landscan.ornl.gov/) 

X11: GDP 
GDP emission at 1 km × 1 km resolution/(ten thousand 

yuan/ km²)(https://www.resdc.cn/DOI/DOI.aspx?DOIID=33) 

X12: arable land area 

share 

Arable land area share at 30m × 30m resolution/(%) 

(https://essd.copernicus.org/articles/13/3907/2021/) 

 

 

Considering the potential presence of multicollinearity among the selected driver 

variables in this study, we employed VIF (variance inflation factor) to examine all the 
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aforementioned explanatory variables. This was done to mitigate any bias in the 

estimated results caused by intercorrelations between indicators. A higher VIF value 

indicates a greater degree of multicollinearity, and it is generally accepted that a 

variable is highly collinear if its VIF value exceeds 10. The reciprocal of VIF represents 

tolerance, with values closer to zero indicating stronger multicollinearity. The VIF is 

calculated as follows: 

 

 2
1

1

1

n

i

ii

VIF X
R =

=
−

  (Eq.1) 

 

The multiple correlation coefficient represents the relationship between the ith 

independent variable and the remaining independent variables in regression analysis. 

The test results are presented in Table 2. Each index has a variance inflation factor 

value below 10, indicating the absence of multicollinearity issues among the selected 

indices. 

 
Table 2. Multicollinear detection of influencing factors 

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 

VIF 5.544 1.692 1.497 3.080 2.210 6.136 1.719 3.003 1.017 2.664 1.214 2.667 

Tolerance 0.180 0.591 0.668 0.325 0.453 0.163 0.582 0.333 0.983 0.375 0.823 0.374 

 

 

Research methodology 

Standard deviation ellipse analysis 

The SDE model is a statistical method utilized for characterizing the distribution 

characteristics of spatial data. This model computes the range, direction, and shape of 

data points to determine the center of gravity, concentration direction, and contraction 

trend of spatial data. 

The center of the ellipse in this study represents the centroid of the PM2.5 

concentration data distribution in a two-dimensional space, while the area of the ellipse 

indicates the spatial extent of PM2.5 distribution. The center of the ellipse is determined 

by the following calculation. 
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The weight of object i is represented by wi, and the spatial coordinate position of the 

research object i is denoted by (xi, yi). 
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The azimuth angle represents the predominant directional trend of the distribution of 

PM2.5. Changes in the azimuth angle can reflect alterations in the primary directional 

trend of PM2.5 distribution. The formula for computing azimuth Angle θ is as follows: 
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The variables ( ,i ix y ) in the given equation represent the spatial displacement from 

the central point ( wX , wY ) to the coordinates of PM2.5 data within the study area. 

The ellipse’s major and minor axes correspond to the principal directions in the 

dataset. The formula for computing the major and minor semi-axes is as follows: 
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Spatial autocorrelation analysis 

The concept of spatial autocorrelation is employed to depict the interdependence 

between neighboring geographical locations as well as the temporal interdependence 

among different locations in terms of variables. Given that PM2.5 concentration data 

possesses spatial attributes, examining its presence of spatial autocorrelation 

characteristics facilitates a more comprehensive investigation into the spatiotemporal 

evolution patterns of PM2.5. Spatial autocorrelation can be categorized into global and 

local types, with global autocorrelation commonly utilized as a Moran index. The 

formula for computing the Moran index is as follows: 

 

 

( )( )
1 1

2

1 1 1

1

n n

i jij

i j

n n n

i ij

i i j

W X X X X

I

X X W
n

= =

= = =

− −

=
 

− 
 



 
 (Eq.7) 

 

In this equation, I stands for the Moran index, while n represents the total figure of cells. 

iX  and jX  denote the PM2.5 concentrations of cells i and j, respectively. ijW  indicates 
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the spatial weight between cells i and j, where a value of 1 signifies contiguity and 0 

signifies non-contiguity. X  signifies the sample average. 

 

Hot spot analysis with rendering 

The Moran Index provides a comprehensive measure of the spatial autocorrelation of 

PM2.5. To further investigate the spatial clustering patterns of PM2.5, this study 

employs hotspot analysis to examine local autocorrelation. 

 

 

1 1*

2

2

1 1

1

n n

jij ij

j j

i

n n

ijij

j j

W x X W

G

n W W

S
n

= =

= =

−

=
  
 −  
   

−

 

 
 (Eq.8) 

 

 
1

n

j

j

X

X
n

=
=

  (Eq.9) 

 

 

2

21

n

j

j

X

S X
n

=
= −


 (Eq.10) 

 

In this circumstance, the total number of PM2.5 data cells is represented by n; jX  is 

the attribute value of data cell j; ijW  denotes the spatial adjacency between cell i and j; S 

relates to the overall mean standard deviation of PM2.5 in the study region. A high 

value of *

iG  signifies a dense clustering of hot spots. 

 

Geographically weighted regression 

The GWR can partially address spatial autocorrelation and spatial non-stationarity 

issues that are beyond the capabilities of the OLS model. The fundamental formula is as 

follows: 

 

 ( ) ( )0

1

, ,
n

i i i i i ij ij

j

Y u v u v X  
=

= + +  (Eq.11) 

 

where i represents a sample unit, ( ,i iu v ) is the spatial coordinate of unit i, iY  denotes the 

annual average mass concentration of PM2.5 for unit i and ijX  corresponds to the jth 

explanatory variable of unit i. The constant term of unit i is denoted by 0 ( , )i iu v , the 

regression parameter of the independent variable in the data sampling point is denoted 

by ( , )j i iu v , and i  represents a random error component. 
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Multiscale geographically weighted regression 

The MGWR model is an extension of GWR that allows for varying neighborhood 

sizes around each spatial element for different explanatory variables. This flexibility 

enables the coefficients of certain variables to change gradually and weakly across the 

study area, while others can exhibit rapid changes. By matching the neighborhood scale 

with each explanatory variable’s spatial scale, MGWR provides a novel approach to 

accurately analyze the correlation between spatial data. 

 

 ( ) ( )0
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, ,
n

i bw i i i i ibwj ij

j
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=

= + +  (Eq.12) 

 

The bwj represents the bandwidth used for the regression coefficients of the jth 

variable. That is, Equation 12 differs from Equation 11 in that ( ),i ibwj u v  represents the 

regression coefficient of bwj bandwidth for the jth variable at the i sample point. The 

MGWR model was calibrated using the inverse fitting algorithm proposed by 

Fotheringham et al. (Fotheringham et al., 2017; Yu et al., 2020). 

The construction of the MGWR model in this paper was based on the development 

of MGWR2.2 software by the Spatial Analysis Research Center (SPARC) at Arizona 

State University (https://sgsup.asu.edu/SPARC). 

Results 

Temporal variation pattern of PM2.5 concentration 

Based on PM2.5 remote sensing data, the average annual PM2.5 concentration in 

Central China and its various provinces and cities during the period from 2000 to 2021 

was calculated. The Figure 2 illustrates that there was an initial increase followed by a 

subsequent decrease in the average annual PM2.5 concentration in Central China 

between 2000 and 2021. Notably, the three provinces exhibited distinct levels of PM2.5 

concentration, with Henan Province displaying significantly higher values compared to 

Hubei and Hunan provinces, thus establishing itself as the most severely affected area 

by PM2.5 pollution in central China. Moreover, Hubei had slightly higher average 

annual PM2.5 concentrations than Hunan, while both regions demonstrated a similar 

inverted “V”-shaped trend overall, reaching their respective peaks in 2011. 

Among them, Henan Province as a whole exhibited a distinct “M” shaped trend in 

terms of air pollution levels. The peak concentrations were recorded in 2007 and 2013, 

reaching 73.35 μg/m³ and 73.85 μg/m³ respectively. In Hubei and Hunan provinces, the 

concentrations of PM2.5 reached their peak in 2011 at levels of 60.46 μg/m³ and 

55.21 μg/m³ respectively. 

From the perspective of each city in Henan Province, as depicted in Figure 3, the 

highest average annual PM2.5 concentration is exhibited by Xinxiang and Jiaozuo 

among the 18 cities, which can be attributed to their local industrial and energy 

structures. The dominance of heavy industry and energy production in these areas 

significantly impacts the environment. Additionally, the abundance of coal resources 

coupled with a reliance on thermal power generation further exacerbates PM2.5 

pollution levels. Conversely, Luoyang and Jiyuan experience relatively low average 
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annual PM2.5 concentrations due to specific factors unique to each city’s location and 

industrial structure. Luoyang’s western position within Henan Province results in a dry 

and cold climate that hinders the accumulation of PM2.5 pollutants; this is also 

indicative of the positive environmental impact achieved through the implementation of 

“Luoyang ban fireworks regulations” by the Luoyang Municipal Bureau of Ecological 

Environment in 2005. On the other hand, Jiyuan’s predominantly light industry-based 

industrial structure has comparatively minimal impact on its environment. 

 

 

Figure 2. Variation trend of the average annual PM2.5 concentration in Central China and the 

three provinces 

 

 

 

Figure 3. Variation trend of the average annual PM2.5 concentration of each city in Henan 

Province 

 

 

From the perspective of each city in Hubei Province, as depicted in Figure 4, 

Tianmen and Xiantao exhibit the highest annual concentration of PM2.5 among the 17 
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cities examined. As industrialized cities, they house numerous factories and enterprises 

that emit substantial amounts of exhaust gases during production processes, including 

significant quantities of particulate matter - one of the primary sources of PM2.5 

pollution. Conversely, Enshi Prefecture, Shennongjia Forest District and Shiyan City 

display relatively low average annual concentrations due to their cleaner industrial 

structures with lower proportions of heavy industry and chemical manufacturing 

resulting in reduced emissions of pollutants. Notably, Shennongjia Forest area is 

China’s only administrative division designated as a “forest area,” boasting an 

impressive vegetation coverage rate at 96.7%. The abundant greenery has excellent 

adsorption capabilities for airborne particulate matter while also purifying it from the air 

- effectively reducing PM2.5 levels. 

 

 

Figure 4. Variation trend of the average annual PM2.5 concentration of each city in Hubei 

Province 

 

 

From the perspective of each city in Hunan Province, as depicted in Figure 5, 

Xiangtan city exhibits the highest average annual PM2.5 concentration among the 14 

cities examined. The key pillar industries in Xiangtan city encompass mechanical and 

electrical engineering, metallurgy, textiles, chemicals, and building materials. These 

industries play a pivotal role in the economic development of Xiangtan City while 

significantly impacting PM2.5 concentration through exhaust gas emissions and energy 

consumption. Conversely, Xiangxi Prefecture boasts a low average annual PM2.5 

concentration due to its abundant vegetation coverage and the presence of ecosystems 

such as forests and wetlands that contribute to air purification efforts. 

In order to further analyze the temporal variation characteristics of PM2.5 

concentration in Central China, this study utilizes the annual average PM2.5 

concentration limit specified in the Ambient Air Quality Standard (GB3095-2012). The 

annual PM2.5 concentration value is divided into four intervals, and an analysis is 

conducted on the proportion of districts and counties falling within each interval during 

the study period, as depicted in Figure 6. The findings indicate that, prior to 2018, there 

was a limited number of districts and counties in central China with an average annual 
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PM2.5 concentration below 35 μg/m³. Although the count of districts and counties 

exhibiting an average PM2.5 concentration below 35 μg/m³ increased after 2018, a 

significant proportion still exceeded this threshold. 

 

 

Figure 5. Variation trend of the average annual PM2.5 concentration of each city in Hunan 

Province 

 

 

 

Figure 6. Trends of PM2.5 concentration changes by range in Central China in 2000–2021 

 

 

Spatial variation trend analysis of PM2.5 concentration 

In order to analyze the spatial variation characteristics of PM2.5 concentration in 

Central China more intuitively, image data were extracted from the original PM2.5 

remote sensing data for the years 2000, 2005, 2010, 2015, and 2020. The statistical 

analysis of PM2.5 concentration was conducted at a sub-division level based on county 



Lu et al.: Analysis of the spatiotemporal evolution characteristics and spatial heterogeneity driving mechanisms of regional PM2.5 

based on MGWR: a case study in Central China 
- 370 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(1):359-385. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2301_359385 

© 2025, ALÖKI Kft., Budapest, Hungary 

administrative districts. The visualization results are presented in Figure 7. In all five 

selected years, Henan Province, particularly its northern region, consistently exhibited 

high levels of PM2.5 pollution. It is evident that between 2000 and 2010, there was a 

gradual increase in average annual PM2.5 concentration above 70 μg/m³ across various 

districts and counties, indicating a north-to-south spreading trend within Henan 

Province. From 2015 to 2020, there has been a significant decrease in the number of 

districts and counties with an average annual PM2.5 concentration above 70 μg/m³; this 

suggests that central China’s air quality has shown considerable improvement over the 

past five years. However, it should be noted that a large number of counties still 

experience an mean yearly PM2.5 concentration above 35 μg/m³. 

 

 

Figure 7. Spatial distribution of average annual PM2.5 concentration in Central China 

 

 

The SDE is employed in this study to quantitatively elucidate the centrality, 

directionality, and extensibility of the annual average PM2.5 concentration in 

Central China from a global and spatiotemporal perspective. Only the findings for 

2000, 2005, 2010, 2015, and 2020 are presented herein as delineated in Table 3 and 

Figure 8. 
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Table 3. Standard deviation ellipse model parameters 

Year 2000 2005 2010 2015 2020 

Displacement of center of gravity/ km – 1.395 13.393 12.120 8.714 

Azimuth/° 12.362 12.560 12.571 12.840 12.754 

Ellipse area/ km² 361224.589 345610.596 354757.107 354502.777 353032.094 

Long axis standard deviation/ km 560.110 561.794 556.255 562.720 564.417 

Short axis standard deviation/ km 205.294 200.931 203.016 200.539 199.107 

 

 

 

Figure 8. Spatial variation of the center of gravity and standard deviation ellipse of PM2.5 

concentration 

 

 

From the perspective of spatial barycenter shift, the average annual PM2.5 

concentration in central China exhibited a slight northward shift of 1.395 km from 2000 

to 2005, while the concentration center remained relatively stable. Subsequently, 

between 2005 and 2010, there was a significant southward movement of the PM2.5 

concentration center by approximately 13.393 km. Moreover, during the periods 



Lu et al.: Analysis of the spatiotemporal evolution characteristics and spatial heterogeneity driving mechanisms of regional PM2.5 

based on MGWR: a case study in Central China 
- 372 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(1):359-385. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2301_359385 

© 2025, ALÖKI Kft., Budapest, Hungary 

spanning from 2010 to 2015 and from 2015 to 2020, there were successive 

northeastward shifts of approximately 12.840 km and 12.754 km respectively for the 

PM2.5 concentration center within Central China region over these ten years; this trend 

is consistent with the spatial distribution pattern characterized by a “northeast-to-

southwest” direction for PM2.5 concentration within Central China region overall. On 

an overall basis, it can be inferred that there has been a gradual northward shift 

observed for the spatial barycenter of PM2.5 concentration within Central China region 

over time. 

From the perspective of azimuthal variation, the spatial distribution pattern of PM2.5 

concentration in Central China generally exhibits a “northeast-southwest” directionality, 

which is closely associated with the region’s geographical landform and population 

distribution. The fluctuation in rotation angle has increased from 12.362° in 2000 to 

12.754° in 2020, indicating a weak tendency towards an “east-west” trend in the spatial 

distribution pattern of PM2.5 pollution in Central China. 

From the perspective of ellipse coverage, the area of the standard deviation ellipse 

exhibited an overall decreasing trend, declining from 361224.589 km² in 2000 to 

345610.596 km² in 2005. However, between 2005 and 2010, it expanded to reach a 

maximum of 354757.107 km² before gradually contracting to 353032.094 km² in 2020. 

This indicates a pattern of “contraction-expansion-contraction” in its distribution range. 

Furthermore, the standard deviation ellipse for the five-year period primarily 

encompasses the northern and central regions of Henan and Hubei provinces, which are 

crucial areas for air pollution prevention and control efforts in Central China. 

The difference between the length of the major and minor axes of the SDE exhibits a 

gradually increasing trend overall, thereby confirming the directional nature of PM2.5 

concentration spatial distribution. From the perspective of the major axis, there was an 

initial increase in its standard deviation from 560.110 km in 2000 to 561.794 km in 

2005, indicating an expanding trend in average annual PM2.5 concentration across 

Central China along the “northeast-to-southwest” direction, where highly polluted areas 

were concentrated. Subsequently, from 2005 to 2010, there was a decrease in the 

standard deviation of the major axis from561.794 km to 556.255 km, suggesting a 

contraction trend in air pollution along this main direction during that period. Similarly, 

it can be observed that air pollution in Central China exhibited an alternating pattern of 

expansion and contraction along its main direction between 2000 and 2021, which 

aligns with changes seen in average annual PM2.5 concentration over the past twenty-

two years within this region as well. Furthermore, there is a general decreasing trend 

observed for the standard deviation of the minor axis, indicating an increased spatial 

centripetal force exerted by PM2.5 concentration across central China. 

 

Spatial aggregation analysis of PM2.5 concentration 

Global spatial autocorrelation analysis 

To achieve a thorough understanding of the spatial distribution characteristics of 

PM2.5 in Central China, we analyzed the annual average PM2.5 concentration data for 

the years 2000, 2005, 2010, 2015, and 2020. Using spatial autocorrelation analysis, we 

calculated the Moran index (Fig. 9) for these years. The results show that the Moran 

index is positive for all five years and passes the significance test at the 0.01 level. This 

indicates a significant positive spatial correlation and aggregation in PM2.5 distribution 

across Central China. The strong spatial autocorrelation underscores the importance of 
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considering spatial heterogeneity when developing models to understand the driving 

mechanisms behind PM2.5 concentrations. 

 

 

Figure 9. Moran’s I index of PM2.5 in 2000, 2005, 2010, 2015 and 2020 

 

 

Local spatial autocorrelation analysis 

To gain a deeper understanding of the spatial concentration characteristics of PM2.5 

in central China, we conducted a spatial Getis-Ord hot spot analysis on the satellite 

inversion data of PM2.5, building upon the findings from global spatial autocorrelation 

analysis. This analysis aimed to explore the spatial distribution patterns of local PM2.5 

concentrations. The results (Fig. 10) indicate that the study area as a whole exhibits 

strong aggregation during the period from 2000 to 2021, with certain areas in 2000, 

2005, 2010, 2015 and 2020 showing significant aggregation at a confidence level of 

99%. From a spatial perspective, high-spatially correlated hot spots are concentrated in 

central Henan Province and central Hubei Province; whereas low-spatially correlated 

cold spots are concentrated in Hunan Province and western Hubei Province. The 

distribution pattern of cold and hot spots for PM2.5 concentrations remains relatively 

stable across central China; however, there have been some changes observed in terms 

of their size and number within different grades over time. Temporally speaking, there 

is an overall strengthening trend observed in the spatial autocorrelation of PM2.5 in 

central China; notably, local autocorrelation is significantly stronger in 2020 compared 

to that in 2000. Spatially speaking, there is evidence suggesting southward diffusion 

trends for hot spots as they gradually spread from Henan province and central Hubei 

Province towards central Hunan Province.  
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Figure 10. Distribution of PM2.5 spatial cold hot spots in 2000, 2005, 2010, 2015 and 2020 

 

 

Analysis of the driving mechanism 

Comparison of the GWR Model and MGWR model 

The present study utilizes 2020 PM2.5 and driver data to construct the driving 

mechanism of PM2.5. In order to obtain a driving model with improved fitting effect 

and closer approximation to real-world conditions, GWR and MGWR models were 

separately established at two levels of data units: grid sampling and county-level 

administrative division, with selection of models exhibiting superior goodness-of-fit for 

subsequent driving analysis. 

Among them, raster sampling obtained 2948 basic data units of natural factors and 

socio-economic factors after random sampling in Central China and eliminating invalid 

sampling data. Subsequently, 383 basic data units of natural factors and socio-economic 

factors were obtained by averaging the influencing factors in each district and county 

through county-level administrative divisions. In the results of regression analysis, a 

higher goodness of fit R² value indicates a better fitting effect and higher precision of 

the model. The AICC value also plays a role in determining the quality of fit, with 

smaller values indicating better performance. Table 4 demonstrates that both datasets 

show higher goodness of fit R² values in the MGWR model compared to the GWR. 
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Table 4. Comparison of GWR and MGWR models 

Evaluation index 
Raster sampling data County-level data 

GWR MGWR GWR MGWR 

R² 0.903 0.997 0.851 0.981 

AICc 1510.133 -7337.479 374.799 -210.331 

 

 

Additionally, the AICc value for the MGWR is significantly lower than that for the 

GWR. These findings suggest that the MGWR outperforms traditional GWR. 

Therefore, based on our data analysis results, it can be concluded that using an MGWR 

model yields greater accuracy when studying temporal and spatial characteristics as 

well as driving factors related to PM2.5 levels. Furthermore, it should be noted that 

raster sampling data exhibits superior goodness-of-fit measures (R²) and AICc values 

compared to district- or county-level data; thus, emphasizing how accurate spatial data 

impacts modeling outcomes when constructing PM2.5 driving models. 

In Figures 11 and 12, R² represents the actual explanatory power of the natural and 

socio-economic indicators selected from the raster sampling data and district-level data 

on PM2.5 concentration impact levels. It is evident that both datasets’ modeling results 

indicate a higher R² for MGWR compared to GWR. The results of MGWR models for 

both datasets reveal that over 80% of sample units have an R² greater than 0.85, further 

demonstrating the strong comprehensive interpretability of the selected impact factors 

on PM2.5 concentration in Central China. 

 

 

Figure 11. Comparison of local R² spatial distribution between GWR and MGWR fitting results 

from raster sampling 
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Figure 12. Comparison of local R² spatial distribution between GWR and MGWR fitting results 

at district and county level 

 

 

According to the bandwidth comparison between the GWR and MGWR (Table 5), it 

is apparent that the MGWR captures the varying influence scales of different variables, 

while the GWR only presents their average influence scales. The bandwidth of each 

variable quantifies the spatial influence scales of various driving factors, highlighting 

the disparities in the influence scales of different natural and socioeconomic factors on 

PM2.5. A larger influence scale signifies lower spatial heterogeneity in the factor’s 

impact, whereas a smaller influence scale indicates greater spatial heterogeneity. 

Among the natural factors, the impact magnitudes of air temperature, relative 

humidity, elevation, and precipitation are 46, 43, 44, and 43 respectively; all of which 

are relatively small (<78). Conversely, these factors have a significant influence on 

PM2.5 concentration levels. Additionally, there is spatial heterogeneity in the effect 

magnitudes of vegetation index (97) and average wind speed (140). 

Among the socioeconomic factors, the impact magnitudes of night light and GDP on 

PM2.5 concentration are 44 and 43, respectively (<78), exhibiting significant spatial 

heterogeneity. Electricity consumption, population density, and proportion of arable 

land have impact magnitudes of 299, 349, and 555 on PM2.5 concentration, 

respectively; these factors also display certain levels of spatial heterogeneity. CO2 

emission has an impact magnitude of 2947 on PM2.5 concentration, which is essentially 

equivalent to the total sample size; it represents a global variable with minimal spatial 

heterogeneity. The influence of CO2 emission on PM2.5 concentration remains 

consistent across central China. 
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Table 5. Bandwidth of GWR and MGWR results 

Factor Bandwidth of GWR Bandwidth of MGWR 

Intercept 78 43 

X1: air temperature 78 46 

X2: vegetation index 78 97 

X3: wind speed 78 140 

X4: relative humidity 78 43 

X5: elevation 78 44 

X6: precipitation 78 43 

X7: nighttime light 78 44 

X8: CO2 emission 78 2947 

X9: electricity consumption 78 299 

X10: population density 78 349 

X11: GDP 78 43 

X12: arable land area share 78 555 

 

 

Spatial pattern of regression coefficient coefficients of drivers 

The statistical depiction of each coefficient in the MGWR model is shown in 

Table 6. The MGWR model’s estimated coefficients are indicated by the results 

utilizing standardized data and the proportion of each that influences coefficient of 

factor on PM2.5 concentrations’ different directions. Spatial heterogeneousness is 

revealed by the regression coefficients that are obtained from the multi-scale 

geographical weighted regression (MGWR) model in each variable’s effects on regional 

PM2.5 concentration. All CO2 emissions exhibit positive effects, while average wind 

speed, night light, and GDP predominantly demonstrate positive effects, accounting for 

74.898%, 71.744%, and 85.583% of total samples, respectively. The impact of air 

temperature and electricity consumption on PM2.5 exhibited a polarizing effect, with an 

equal distribution of positive and negative effects. The vegetation index, relative 

humidity, elevation, precipitation, population density, and cultivated land area exerted 

inhibitory influences on PM2.5 levels, accounting for 82.598%, 85.753%, 74.152%, 

95.522%, 73.202%, and 66.418% of the total sample, respectively. 

 
Table 6. Parameter estimation for regression of PM2.5 concentration using MGWR 

Variables Mean Min Max  + (%) -(%) 

Intercept 0.156 -0.651 1.056 59.837 40.163 

X1: air temperature -0.003 -0.502 0.340 51.696 48.304 

X2: vegetation index -0.021 -0.108 0.074 17.402 82.598 

X3: wind speed 0.016 -0.033 0.089 74.898 25.102 

X4: relative humidity -0.074 -0.332 0.221 14.247 85.753 

X5: elevation -0.087 -0.398 0.146 25.848 74.152 

X6: precipitation -0.428 -0.813 0.259 4.478 95.522 

X7: nighttime light 0.022 -0.132 0.129 71.744 28.256 

X8: CO2 emission 0.008 0.007 0.008 100.000 0.000 

X9: electricity consumption -0.004 -0.058 0.067 46.574 53.426 

X10: population density -0.006 -0.026 0.014 26.798 73.202 

X11: GDP 0.186 -0.127 0.947 85.583 14.417 

X12: arable land area share -0.001 -0.010 0.010 33.582 66.418 
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The natural class factors are illustrated in Figure 13. (1) The influence of air 

temperature on PM2.5 concentration exhibits significant spatial heterogeneity, with a 

promoting effect observed in most areas of northwest Henan Province and Hubei 

Province. However, the concentration of PM2.5 is inhibited in most parts of Hunan 

Province. (2) The vegetation index predominantly inhibits PM2.5 concentration across 

most areas. Nevertheless, there are exceptions where promotion effects on PM2.5 

concentration are observed in the northern part of Henan Province, central part of Hubei 

Province, and southwest part of Hunan Province. (3) Average wind speed primarily 

exerts a positive impact on PM2.5 concentration in Central China; however, it shows an 

inhibitory effect only in the southeast region of Hunan Province and eastern part of 

Henan Province regarding PM2.5 levels. This suggests that under specific wind speed 

conditions, particulate matter may be suspended and propagated by wind currents 

leading to increased concentrations of PM 2.5.  

 

 

Figure 13. Spatial pattern of multi-scale geographical weighted regression coefficients -- 

natural class factors 
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(4) The influence of relative humidity on PM2.5 concentration in central China is 

mainly inhibition. Only in Henan, Hubei, the western mountainous areas of the two 

Lakes basin and other small areas showed a positive effect, and in the rest of the region 

showed an inhibitory effect on PM2.5 concentration. (5) Elevation significantly inhibits 

PM2.5 concentration in most areas of Central China but only shows a promotion effect 

in some mountainous regions. (6) Precipitation mainly suppresses PM2.5 levels except 

for Shiyan City’s western region where it has a positive promoting effect on PM2.5 

concentration possibly influenced by other environmental factors such as precipitation 

intensity. Overall, higher precipitation enhances the clearance rate of PM2.5 particles. 

The socioeconomic factors are shown in Figure 14: (1) Night light has a positive 

impact on PM2.5 concentration in most regions of central China, particularly in certain 

mountainous areas such as Anyang City, Shiyan City, and Huaihua City. This 

phenomenon can be attributed to the influence of variations in mountain terrain height 

on the accuracy of night light inversion data. To some extent, night light data can serve 

as an indicator of human activities and socioeconomic parameters. In other words, the 

positive effect of night light on PM2.5 concentration is comparable to that of GDP on 

PM2.5 concentration. (2) CO2 emissions in Central China exert a observable positive 

effect on PM2.5 concentration, with this impact’s intensity bit by bit increasing from 

north-east to south-west. (3) Electricity consumption in northeast Henan, western 

Hubei, western Hunan, and southern Hunan exhibited a positive correlation with PM2.5 

concentration. In contrast, the rest of the region experienced a decrease in PM2.5 levels. 

(4) The population density in central China predominantly suppressed PM2.5 

concentration but had an enhancing effect only in the eastern Henan Plain and Lianghu 

Basin areas. (5) GDP exerts a positive effect on PM2.5 concentration primarily in 

Central China. There, however, exists a disadvantageous correlation between PM2.5 

concentration and GDP merely in certain areas of the eastern Henan Plain and the two 

Lake basins. (6) The proportion of cultivated land area exhibits significant spatial 

heterogeneity, leading to an elevation of PM2.5 concentration across most parts of 

Henan Province and the region bordering Huanggang City and Huangshi City; 

conversely, it inhibits PM2.5 concentration in other areas. 

Discussion 

Through the analysis of the spatiotemporal evolution characteristics of PM2.5 

concentration in provinces, cities, and counties in the central region, it is found that the 

central region is generally a more serious area of PM2.5 pollution. Specifically, Henan 

province has the highest PM2.5 concentration among the three provinces studied, 

highlighting the priority of air environment management in Henan Province. This 

finding is consistent with previous research by Ge et al. (2022). We observe that over a 

span of more than 20 years, the inflection point of the annual average concentration 

variation in three provinces located in Central China consistently coincides with the 

promulgation of environmental governance policy documents or legislation by relevant 

administrative authorities. For instance, in 2011, the Environmental Protection 

Department of Hubei Province issued the “Hubei Province 2011 Comprehensive Plan 

for Controlling Major Pollutant Emissions,” while in 2013, The State Council released 

the “Guidance on Resolving Severe Overcapacity Contradictions.” Additionally, Henan 

Province’s Department of Ecological Environment enacted the “Henan Province 

Regulations on Air Pollution Prevention” and other pertinent policies. This 
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demonstrates that rational policies can be formulated and implemented to effectively 

mitigate PM2.5 pollution. It is worth noting that the results of spatial correlation 

analysis and the standard deviation ellipse model demonstrate a significant regional 

synergistic effect of PM2.5 pollution, with the potential to propagate to surrounding 

areas. Therefore, it is imperative to adopt a holistic approach towards atmospheric 

environmental governance in order to achieve an overall effect greater than the sum of 

its parts. 

 

  

Figure 14. Spatial pattern of multi-scale geographical weighted regression coefficients -- 

socioeconomic factors 

 

 

According to the drive model results, only the impact of CO2 emissions on PM2.5 in 

Central China exhibits a positive correlation with the overall situation. This pattern 

emerges owning to the main source of CO2 emissions being the combustion of fossil 
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fuels such as coal, petroleum, and natural gas throughout industrial output processes. 

This implies that policymakers should fully consider the CO2 emission index, 

particularly emphasizing the significance of large emission sources such as large-scale 

industrial production, and actively promote energy conservation and emission reduction 

across daily life and production activities. The primary factors positively influencing 

PM2.5 levels include wind speed, night light, and GDP. This contrasts with the findings 

of Wang et al. (2020), where wind speed had a negative effect. However, due to low 

average annual wind speeds in central China leading to poor air flow diffusion, 

pollutants react with each other during transmission, exacerbating PM2.5 pollution. 

Night light and GDP objectively reflect regional development levels but also contribute 

to certain environmental pollution during social industrialization and modernization 

processes. Nevertheless, there are still instances where GDP and night light exhibit a 

restraining effect on PM2.5 levels, indicating that development can be coordinated with 

environmental concerns. Therefore, all regions should proactively explore green 

industries suitable for their specific circumstances. 

The spatial distribution of PM2.5 concentration is influenced by air temperature and 

electricity consumption, exhibiting a distinct polarized pattern. In plain areas, higher air 

temperatures promote convective activities, facilitating the diffusion of pollutants and 

enabling convective rain to effectively remove PM2.5. Conversely, in mountainous and 

undulating regions, temperature inversion occurs more frequently, leading to local 

accumulation of atmospheric pollutants (Zhou et al., 2021) and exacerbating pollution 

levels. The primary factor contributing to the polarization of the impact of electricity 

consumption on PM2.5 concentration lies in the divergence of electricity sources, with 

some regions relying on coal combustion for power generation while others utilize cleaner 

methods such as hydropower or wind power. This disparity in power generation modes 

inherently determines the varying effects of electricity consumption on PM2.5 levels. 

The vegetation index, relative humidity, altitude, precipitation, population density, 

and the proportion of cultivated land area exhibited inhibitory effects on PM2.5 

concentration in most regions. Among these factors, the impact of the vegetation index 

can be attributed to its role in adsorbing and retarding fine particles in the atmosphere. 

However, a positive effect was observed in a small portion of the land which may be 

attributed to variations in vegetation types. Therefore, increasing vegetation coverage 

has a certain degree of efficacy in mitigating PM2.5 pollution. The negative impact of 

relative humidity on PM2.5 is attributed to the precipitation resulting from relative 

humidity surpassing a specific threshold, which facilitates the settling of PM2.5 

particles. Conversely, in other regions, the positive effect arises from the occurrence of 

temperature inversions near ground level as relative humidity increases without 

exceeding the threshold. This condition hampers particulate matter diffusion but 

promotes hygroscopic growth and water-phase formation of secondary particulate 

matter, consequently elevating PM2.5 concentration. The impact of elevation on PM2.5 

varies across spatial regions, indicating that altitude significantly influences the 

formation and transport of PM2.5. Therefore, the impact of elevation cannot be ignored 

when considering the role of other factors on PM2.5. Precipitation mainly inhibited 

PM2.5, accounting for 95.522% of the total sample size. This is because the 

precipitation process can wash the particles in the air, and it also has a certain inhibitory 

effect on the dust on the surface. The impact of population density on PM2.5 primarily 

exhibits an inhibitory effect, accounting for 73.202% of the total sample size. 

Population density itself does not directly induce fluctuations in PM2.5 levels; however, 
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it indirectly influences these levels through interactions with individuals’ lifestyles and 

regional industrial and energy structures. This indicates that recent efforts to optimize 

new energy consumption patterns and industrial structure in central China have yielded 

certain achievements. There was significant spatial heterogeneity observed in the impact 

of cultivated land proportion on PM2.5 concentrations. This can be attributed to the 

varying effects of different types of cultivated land on PM2.5 levels, as well as the 

differential adsorption capacities exhibited by dry land and paddy fields towards PM2.5 

particles. For instance, in Henan Province, where dry land dominates the agricultural 

landscape, activities such as straw burning directly contribute to substantial emissions 

of PM2.5 particles into the atmosphere. Conversely, paddy fields mitigate surface 

exposure and dust pollution through vegetation cover and evaporation processes, 

indirectly leading to a reduction in PM2.5 concentrations. 

By comparing the results of raster sampling data modeling and county-level 

administrative division data modeling, we not only find that MGWR outperforms the 

GWR model in analyzing the relationship between multiple spatial attribute data but 

also draws our attention to the impact of varying data accuracy on spatial modeling 

analysis. This provides us with a clear direction for further research, namely, to employ 

higher spatially accurate data for modeling analysis. 

Conclusion 

The influence of PM2.5 on air quality and public health has garnered increasing 

attention, making a pivotal research topic for it in the fields of environmental science 

and public health. This research concentrates on central China as the study topic, 

meticulously looking through the spatiotemporal distribution characteristics of PM2.5 in 

this area through using remote sensing data from 2000 to 2021. Through comprehensive 

analysis spanning 22 years, the temporal evolution trend and spatial distribution pattern 

of PM2.5 pollution is unveiled by us whereas building a driving model to elucidate the 

impacts exerted by using natural and socioeconomic factors on PM2.5 concentration. 

The aforementioned analysis leads to the following conclusions: 

(1) In the past 22 years, the PM2.5 concentration in three provinces in Central China 

exhibited an initial upward trend followed by a subsequent decline, reaching its peak 

around 2012. Among these provinces, Henan province recorded the highest average 

annual PM2.5 concentration, while Hubei and Hunan experienced a similar situation 

with Hubei having a higher average annual PM2.5 concentration compared to Hunan 

province. Although some progress has been made in recent years regarding PM2.5 

control, the average annual PM2.5 concentration in most districts and counties in 

Central China still exceeds the national Class II standard, indicating that there is still 

much work to be done towards mitigating PM2.5 pollution in this region. 

(2) The concentration of PM2.5 in central China during the period from 2000 to 2021 

exhibits evident spatial autocorrelation and significant spatial aggregation, implying that 

the regional interdependence effect of PM2.5 needs to be considered when analyzing its 

spatio-temporal variation characteristics. Overall, the centroid of PM2.5 concentration 

in central China demonstrates a tendency towards northeastward movement. Henan 

Province and northern Hubei Province are pivotal areas for air pollution prevention and 

control efforts in central China. 

(3) Using the MGWR model to construct the PM2.5 driving mechanism allows for 

the identification of influencing factors at different spatial scales, providing a more 
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accurate fit compared to the GWR model. Both models’ results suggest that the MGWR 

model is more effective for examining the factors driving PM2.5 concentrations in 

Central China. Moreover, results obtained from raster data sampling and district-level 

data modeling demonstrate that the accuracy of spatial data has a certain impact on the 

quality of modeling outcomes. The future research work should therefore focus on high-

precision spatial data modeling and acquisition, aiming to obtain analysis results that 

closely align with the actual situation. 

(4) The MGWR model’s regression coefficients demonstrate the varying levels of 

spatial heterogeneity in how each factor affects PM2.5 concentrations in Central China. 

It is crucial to consider this spatial heterogeneity when modeling and analyzing data 

with spatial attributes. Simultaneously, this also demonstrates the necessity of fully 

integrating local circumstances when formulating environmental protection policies 

related to PM2.5 suppression and thoroughly investigating the extent and direction of 

different driving factors’ impact on PM2.5 in order to develop scientifically sound and 

efficient environmental protection policies. 
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