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Abstract. Microbial community is a vital component of aquaculture. In this study, microbial community 

structure and function in whiteleg shrimp (Litopenaeus vannamei) aquaculture were examined through 

16S rRNA gene high-throughput sequencing. Proteobacteria, Bacteroidota and Actinobacteriota were 

observed as the dominant microbial phyla during whiteleg shrimp aquaculture at an industrial scale. With 

time, the relative abundance of Proteobacteria initially increased and then showed a declining trend. On 

the contrary, relative abundance of Bacteroidota and Actinobacteriota initially decreased and then 

increased in the flowing water samples. However, in aquaculture water samples, these dominant bacterial 

phyla showed an opposite trend. Compared to flowing water, microbial richness was significantly lower 

in the aquaculture water samples. Furthermore, PICRUSt2 analysis and Welch’s t-test revealed significant 

variations between the predicted functions of microbial communities in flowing water and aquaculture 

water samples. In the samples of aquaculture water, carbon metabolism, glycine, serine and threonine 

metabolism in the microbial community increased significantly, as compared to the flowing waters. 

Marivita, Candidatus Aquiluna, Donghicola and Polaribacter played important roles in sequestration of 

carbon and reduction of nitrogen. Redundancy analysis revealed that nitrate-N, nitrite-N, ammonia-N, pH, 

salinity and temperature were the key factors influencing the microbial communities during the 

aquaculture of whiteleg shrimp at an industrial scale. 
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Introduction 

With the modernization of fishery, industrial aquaculture has developed rapidly in 

China (Wang, 2015; Abakari et al., 2022). In 2022, industrial mariculture occupied an 

area of approximately 4.32 million m3, with an annual yield of 389,583 tons (CFSY, 

2023). Industrial aquaculture has the advantages of land and manpower saving and 

high productivity, and its impacts on climate and environment are limited. Thus, 

industrial aquaculture can be helpful in achieving the goals of energy saving, emission 

reduction, and transformation of the economic development model (Tang, 2017). 

Whiteleg shrimp (Litopenaeus vannamei) is an important species cultivated globally 

through aquaculture. In 2022, the total yield of whiteleg shrimp was 1,340,280 tons, 

which was 5.23% higher than that in 2021 (CFSY, 2023). With the increase in 

aquaculture yield, the decreased water quality has attracted more and more attention 

among researchers (Jana and Sarkar, 2005; Ritonga, 2021). In shrimp culture, only 10-
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20% of phosphorus and 20-30% of nitrogen in the feeds were consumed by shrimps, 

while over 50% of nutrients remained in the aquaculture waters (Thakur and Lin, 

2003; Zang et al., 2009; Sahu et al., 2013; Chen et al., 2018; Abakari et al., 2022). The 

increased levels of nutrients in aquaculture waters induced the decrease in dissolved 

oxygen and increase in nitrogen, phosphorus and organic matters, and even cause the 

outbreak of harmful algal blooms (Yusoff et al., 2002), which further affected the 

growth and yield of shrimps. 

Microbial community is a vital component of the aquaculture environment and 

plays a crucial role in material cycling, energy flow, water quality control, pathogen 

defense and host health (Abraham et al., 2004; Rungrassamee et al., 2016; Fan et al., 

2019; John et al., 2020; Zhao et al., 2022). Certain microbes may have a positive 

effect on the health of farmed animals, while others may cause diseases and even 

death of cultured species (Crab et al., 2012; De Schryver et al., 2014; Abakari et al., 

2022). Therefore, a complete understanding of the characteristics and ecological 

functions of microbial community in an aquaculture ecosystem is essential to establish 

effective microbial ecological strategies for sustainable management of shrimp 

aquaculture. With the advancements in molecular biology techniques, high-throughput 

sequencing (HTS) of microbial DNA (obtained from environmental samples) has been 

extensively applied to analyze microbial diversity and community structure in 

aquaculture ecosystems (Herlambang et al., 2021; Kolda et al., 2020; Zhou et al., 

2021; Dahle et al., 2022). Compared to traditional techniques, HTS is more accurate, 

highly efficient, easy to operate, and suitable for large-scale spatial and temporal 

investigation. HTS has a good application prospect in the identification of new 

microbes as well as in assessing the diversity of microbial communities in the 

ecosystems (Reuter et al., 2015). 

In this study, diversity and structure of microbial community were investigated in 

whiteleg shrimp aquaculture system at industrial scale, using 16S rRNA gene high-

throughput sequencing. The objectives were to (1) assess the microbial community 

dynamics in the aquaculture water; (2) identify the key environmental factors affecting 

the succession of microbial community. 

Materials and methods 

Sample collection 

Experiments were carried out in Haiyang Yellow Sea Aquatic Products Co., Ltd. 

(36°40′23″N; 121°09′00″E), located in Shandong Province of China. Shrimps were 

cultured in the cement tanks with an area of 80 square meters and a height of 1.5 meters. 

Water depth of was about 1 m. The water supplied for shrimp farming was the mixture 

of seawater and underground brine in the early phase, and then changed to seawater in 

the middle and later phases. The stocking density of was 400 shrimps per square meter. 

During the experiment, the shrimps were fed with commercial feed (Chia Tai Group, 

Qingdao) four times a day. The water was changed four times a day, and the quantity 

accounted for about 20-40% of the total volume. Organic matters accumulated at the 

bottom of ponds were usually was thrown away by using siphon technology or through 

outlets. During the process of shrimp cultivation, some water purification agents 

including magnesium hydroxide, calcium hydroxide, silicon dioxide, 12 trace elements 

and some probiotics including photosynthetic bacteria, lactic acid bacteria, yeast, other 

active bacteria were used to purify water and promote the healthy growth of shrimps. 
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Samples of flowing water (FW) and aquaculture water (AW) in four tanks whiteleg 

shrimp aquaculture were collected in every ten days from February to May in 2019. The 

sampling period covered the early stage (27th Feb to 9th Mar), the middle stage (19th Mar 

to 8th Apr), the later stage (18th Apr to 18th May), and the final stage (28th May) of 

whiteleg shrimp cultivation. Dissolved oxygen (DO) salinity (S), temperature (T), and 

pH of water samples were detected in situ by Aqua TROLL®600 (In-Situ Inc., USA). 

Collected water samples were placed in cool boxes and transported to laboratory for 

further analysis. 100 mL of each sample was allowed to pass through 0.22 μm Millipore 

membrane, and then the used membrane was utilized for DNA analysis. 

Simultaneously, 500 mL of each water sample was passed through 0.45 μm Millipore 

membrane, and the filtered water was used to determine the nitrite-N, nitrate-N, 

ammonia-N, and orthophosphate-P contents. 

 

DNA extraction and amplicon sequencing 

Genomic DNA was extracted from the collected water samples using the FastDNA 

spin kit for soil (MP Biomedicals, OH, USA), as instructed by the manufacturer. 

Quality and concentration of DNA were assessed by a Nanodrop spectrophotometer 

(NanoDrop Technologies, USA), while DNA purity was analyzed through 1% agarose 

gel electrophoresis. In polymerase chain reaction (PCR), V3-V4 region of 16S rRNA 

genes was targeted using 338F (5′-ACTCCTACGGGAGGCAGCA-3′) and 806R (5′-

GGACTACHVGGGTWTCTAAT-3′) primers (Mori et al., 2013). All experiments were 

performed on three replicates of each sample. PCR amplicons of the same sample were 

mixed and separated by 2% agarose gel electrophoresis. Furthermore, the amplicons 

were purified using the AxyPrepDNA Gel Extraction Kit (Axygen Biosciences, USA), 

and analyzed by QuantiFluor™-ST (Promega, USA). Subsequently, purified amplicons 

were pooled in equimolar and the sequence library was prepared using a TruSeqTM 

DNA Sample Prep Kit. The paired-end (PE300) sequencing was performed on MiSeq 

platform (Illumina, USA) at Majorbio Bio-Pharm Technology Co. Ltd (Shanghai, 

China). Obtained raw sequences were deposited in National Center for Biotechnology 

Information (NCBI), with accession number: SRP349336. 

 

Bioinformatics analysis and statistical analysis 

QIIME (version 1.9.1) was used to demultiplex and filter the raw sequences after 

assessing their quality. Using UPARSE (version 11), filtered sequences were clustered 

in same operational taxonomic unit (OTU), based on the 97% similarity level. The 

taxonomic assignment of each OTU was done using ribosomal database project (RDP) 

classifier (version 2.13), based on the Silva16S rRNA database (version 138). Alpha 

and beta diversity indices of microbes were determined using Mothur (version 1.30.2) 

and QIIME (version 1.9.1), respectively. The Chao1 and Shannon indices were used for 

alpha diversity analysis (Chao, 1984; Lemos et al., 2011), while non-metric 

multidimensional scaling (NMDS) was employed for beta diversity assessment. 

Variance inflation factor (VIF) analysis was used to determine the collinearity among 

the different water quality parameters. The relationships between the water quality 

parameters and the microbial community were determined by the redundancy analysis 

(RDA) based on linear model and the Spearman’s rho correlation analysis. To predict 

the functional composition of microbial community, phylogenetic investigation of 

communities by reconstruction of unobserved states (PICRUSt 2, version 1.1.0) was 
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applied based on 16S rRNA sequences. Welch’s t-test (p < 0.05) was conducted in 

statistical analysis of metagenomic profiles (STAMP) software to determine the 

statistically significant variations in the predicted functions and structures of microbial 

communities between FW and AW samples. 

Results 

Water quality parameters 

The water quality parameters in the FW and AW are summarized in Table A1. 

During the study period, the water temperature in the FW was lower than those in the 

AW. The salinity in the FW and AW had no obvious difference, showing increased 

firstly and then maintained stable. DO concentrations increased firstly and then 

decreased in the FW, but showed the opposite tendency of changes in the AW. The 

average concentration of DO in the FW was higher than those in the AW. pH values 

increased gradually in the FW, but decreased firstly and then increased in the AW. The 

average concentrations of ammonia-N, nitrate-N, nitrite-N and orthophosphate-P in the 

FW were 0.03 mg/L, 0.56 mg/L, 0.03 mg/L and 0.06 mg/L, respectively. The average 

concentrations of ammonia-N, nitrate-N, nitrite-N and orthophosphate-P in the AW 

were 1.48 mg/L, 1.28 mg/L, 2.16 mg/L and 0.29 mg/L, respectively. The concentrations 

of these nutrients were lower in the FW than those in the AW. 

 

Microbial community composition 

The composition of microbial community and distribution of microbial phyla in the 

FW and SW samples have been shown in Figure 1. In FW samples (Fig. 1a), 

Bacteroidota was the most abundant phylum in the early stage of cultivation, with a 

relative abundance ranging from 41.11% to 56.63%, followed by Proteobacteria 

(34.09% - 40.42%). In the middle stage of cultivation, abundance of Bacteroidota 

declined, and Proteobacteria became the most dominant phylum. In the later and final 

stages of cultivation, a decrease in the relative abundance of Proteobacteria was 

observed, along with the increase in the abundance of Bacteroidota and 

Actinobacteriota; however, Proteobacteria was still more dominant than the other 

phyla. In the AW samples (Fig. 1b), Proteobacteria, Bacteroidota and Actinobacteriota 

were the dominant phyla. The relative abundance of Proteobacteria initially decreased 

decreasing, and then increased as the cultivation progressed. On the contrary, relative 

abundance of Bacteroidota and Actinobacteriota initially increased and then 

decreased. 

 

Diversity of the microbial community 

Microbial community diversity and richness were evaluated using the Shannon index 

and Chao1 index (Fig. 2a, b), respectively. The findings indicated that there was no 

noteworthy difference between the species diversities in AW and FW samples, but the 

species richness in AW samples was significantly lesser than that in FW samples 

(p < 0.01). NMDS analysis revealed that the distances of samples in FW varied 

significantly compared to AW (Fig. 3). Samples of FW and AW were clustered 

discretely with significant distances between the clusters, indicating that the microbial 

community in FW was significantly different than the microbial community in AW 

samples (Fig. 3). 
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Figure 1. Microbial community composition at phylum level in the FW (a) and AW (b) samples 

obtained from the whiteleg shrimp aquaculture tank 

 

 

 

 

Figure 2. Shannon (a) and Chao1 (b) indices of microbial communities at the OTU level 
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Figure 3. Results of the NMDS analysis of microbial communities 

 

 

Connections between water quality indicators and microbial community 

A total of 6 water quality parameters (T, S, pH, nitrate-N, ammonia-N, and nitrite-N) 

were used for RDA after VIF analysis. Results of RDA showing the relationships 

between water quality parameters and microbial communities (genus level) in the FW 

and AW samples have been presented in Figure 4. The first axis explained 23.94% 

variations, while the second axis was able to explain 16.19% of the total variations 

between the FW and AW samples. Temperature, salinity, nitrate-N, nitrite-N, ammonia-

N, and pH were the major factors affecting the microbial communities (p < 0.05). 

Temperature, nitrate-N, nitrite-N and ammonia-N were found to be positively related 

with microbial community in the AW samples, but negatively connected to the 

microbial community in FW. On the contrary, pH showed a negative relationship with 

microbial community in the AW samples, but a positive connection with microbial 

community in FW. 

The correlation heatmap demonstrating the relationships between water quality 

parameters and the dominant genera (average relative abundance over 0.1%) in FW and 

AW samples has been shown in Figure 5. In FW samples, Pseudomonas showed 

significant positive relationship with orthophosphate-P, DO and salinity (p < 0.05), and 

significant negative connection to temperature (p < 0.01). Mycobacterium exhibited 

substantial positive correlation with pH (p < 0.01) and significant negative correlation 

with nitrate-N (p < 0.01) and ammonia-N (p < 0.05). NS3a marine group showed 

significantly positive relationship with ammonia-N (p < 0.01) and negative relationship 

with pH (p < 0.05). Erythrobacter exhibited strong positive relationship with salinity 

(p < 0.05). In AW samples, Vibrio and Pseudomonas showed strong positive 
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connections to nitrite-N and orthophosphate-P (p < 0.01), and strong negative 

relationships with pH (p < 0.01) and temperature (p < 0.05). Pseudoalteromonas 

showed significant negative association with temperature. Phaeocystidibacter exhibited 

noteworthy negative relationship with DO (p < 0.05), while Erythrobacter was strongly 

and negative connected to salinity (p < 0.05). 

 

 

Figure 4. Results of RDA conducted on the microbial communities in FW and AW samples 

 

 

 

Figure 5. The correlation heatmap of dominant genera and water quality parameters in FW (a) 

and AW samples (b). *Represents significant correlation at the 0.05 level, ** represents 

significant correlation at the 0.01 level 
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Predicted function of microbial community 

A total of 6 KEGG pathways at level 1 were identified by PICRUSt2 analysis. 

Metabolism was found to be the most abundant function in the communities of AW and 

FW samples, followed by genetic information processing, environmental information 

processing, cellular processes, human diseases and organismal Systems. Among these, 3 

pathways significantly varied between FW and AW samples (p < 0.05). Metabolism 

function was enriched in the AW samples, while cellular processes and organismal 

systems were enriched in the FW samples (Fig. 6a). A total of 46 KEGG pathways at level 

2 were also identified. Global and overview maps were found to be the most dominant 

pathways. Among these, 4 pathways of FW (with average relative abundance greater than 

1%) were significantly different than those in AW samples (p < 0.05). Global and 

overview maps were more abundant in the AW than in the FW, whereas xenobiotics 

biodegradation and metabolism, signal transduction, and lipid metabolism were 

significantly enriched in the FW samples (Fig. 6b). A total of 400 KEGG pathways at level 

3 were identified in this study. Among these, 7 pathways with average relative abundance 

greater than 1% varied significantly between FW and AW samples (p < 0.05). ABC 

transporters, quorum sensing, carbon metabolism, and metabolism of glycine, serine and 

threonine were more abundant in the AW than in the FW, whereas two-component system, 

metabolic pathways and pyruvate metabolism were more enriched in the FW (Fig. 6c). 

 

 

 

 

Figure 6. Extended error bar plots revealing the predicted potential functions of microbial 

communities based on the KEGG annotation at level 1 (a), level 2 (b) and level 3 (c) differing 

significantly between FW and AW samples 

Discussion 

Differences of microbial communities and functions between FW and AW samples 

In this study, microbial diversity and richness in AW samples were lower than that in 

FW samples (Fig. 2). This indicated that aquaculture decreased the diversity and 
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richness of microbial communities in pond water. Aquaculture changed the 

physicochemical environment of waters and sediments (Yusoff et al., 2002). 

Specifically, aquaculture activities increased the contents of nutrients and organic 

matters in the waters, which was conducive to the growth and reproduction of microbes 

that prefer such an environment, while inhibited the growth of environmentally 

sensitive species, thus affecting the microbial community composition and diversity 

(Sun et al., 2021). As the process of aquaculture progressed, the relative abundance of 

Proteobacteria initially increased and then showed a declining trend, while the relative 

abundance of Bacteroidota and Actinobacteriota in FW samples showed an initial 

decline, followed by an increasing trend (Fig. 1a). In AW samples, an opposite trend 

was observed, with an initial decline in the relative abundance of Proteobacteria, which 

later increased; whereas the relative abundance of Bacteroidota and Actinobacteriota 

initially increased and then began to decline (Fig. 1b). Proteobacteria was more 

abundant in the FW samples, while Bacteroidota and Actinobacteriota were more 

dominant in the AW samples (Fig. 1). According to the previous studies, some 

members of Bacteroidota are useful decomposers of organic matters (Thomas et al., 

2011), while Actinobacteriota are well-known producers of bioactive natural products 

(Van Keulen et al., 2014; Bernal et al., 2015). Therefore, the higher relative abundance 

of Bacteroidota and Actinobacteriota in FW was probably due to the rich nutrients 

available in the environment. Further comparisons and analyses of microbial 

communities revealed that 8 dominant phyla differed significantly between AW and FW 

samples (p < 0.05). Actinobacteriota and Verrucomicrobiota were more abundant in 

AW samples, while Proteobacteria, Firmicutes, Patescibacteria, Chloroflexi, 

Myxococcota and Bdellovibrionota were more enriched in the FW samples (Fig. 7a). A 

total of 8 dominant genera showed significant variations between FW and AW samples 

(p < 0.05). Marivita, Candidatus Aquiluna, Donghicola and Polaribacter were more 

abundant in AW samples, while Pseudomonas, Erythrobacter, Limnobacter and 

Pseudoalteromonas were enriched in the FW samples (Fig. 7b). 

 

 

 

Figure 7. Dominant microbial phyla (a) and genera (b) in FW and AW samples 
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Bacteria of Marivita genus are ubiquitous in marine environments, and can 

participate in the absorption and metabolism of inorganic and organic compounds 

(containing carbon, nitrogen and phosphorus) in the marine ecosystems (Hwang et al., 

2009; Zheng et al., 2019; Mesquita et al., 2022; Wei et al., 2023). In previous 

investigations, Marivita was often found to be dominant in marine or saline 

environments associated with phytoplankton blooms or high organic matter content 

(Slightom and Buchan, 2009; Wei et al., 2023). The genome of Marivita comprises a 

complete cluster of photosynthetic genes, suggesting that the bacteria of Marivita genus 

can perform photoheterotrophic metabolism (Zheng et al., 2019). When Marivita enter 

the late-exponential growth phase, it can even compete with phytoplankton for 

inorganic nitrogen (Zheng et al., 2019). The genome of Marivita shows diverse 

metabolic functions (e.g., assimilatory nitrate reduction, CO oxidation, poly-β-

hydroxybutyrate metabolism, numerous transporters, mixotrophy, and sulfur 

metabolism), which enables these microbes to inhabit different marine environments 

(Zheng et al., 2019). Candidatus Aquiluna has been reported as an important genus of 

bacteria in aquaculture. It is a photoheterotroph carrying actinorhodopsin and has the 

ability to fix carbon (Kang et al., 2012). Bacteria of Donghicola genus are oxidase- and 

catalase-positive, and can reduce nitrate to nitrite (Tan et al., 2009), thus playing a 

crucial role in the nitrogen cycling in aquaculture system and promoting the growth of 

shrimps. Polaribacter is a heterotrophic bacterium that is widely distributed in various 

marine ecosystems (Gosink et al., 1998; Nedashkovskaya et al., 2005, 2013, 2018; 

Yoon et al., 2006). Previous studies have reported that the abundance of Polaribacter is 

usually connected positively with the concentration of chlorophyll a (Williams et al., 

2013). Moreover, genes encoding polysaccharide hydrolase and protease are abundant 

in the genome of Polaribacter, which enable it to degrade polymer compounds (Gómez-

Pereira et al., 2010, 2012; Williams et al., 2013). Therefore, Polaribacter also plays an 

important role in the marine carbon cycle. Overall, these bacteria can transform and 

metabolize nutrients, and due to their high abundance in the AW samples, carbon 

metabolism and the metabolism of glycine, serine and threonine increased significantly 

in the AW samples, as compared to FW samples (Fig. 6c). 

 

Environmental factors driving the shifts in microbial community structure 

Previous studies have reported that only 20-30% of N and 10-20% of P in the feeds 

were assimilated and absorbed by shrimps, and the rest of the nutrients were retained in 

the AW in multiple forms during marine shrimp culture (Thakur and Lin, 2003; Zang et 

al., 2009; Sahu et al., 2013; Chen et al., 2018; Abakari et al., 2022). The remaining 

nutrients stimulated variations in the physicochemical properties of AW, thus changing 

the microbial community and diversity (Herlambang et al., 2021; Li et al., 2021; Sun et 

al., 2021; Zhou et al., 2021; Dahle et al., 2022). In this study, temperature, salinity, 

nitrate-N, nitrite-N, ammonia-N, and pH were the major factors affecting the microbial 

communities in FW and AW samples (Fig. 4). This finding which was in agreement 

with the former studies (Zhang et al., 2014; Sun et al., 2021). The relatively rich 

inorganic nitrogen in AW samples induced rapid propagation of some bacteria that 

prefer the eutrophic environment, and inhibited the growth of environmentally sensitive 

bacteria (Chrzanowski et al., 1995; Wang et al., 2014). This led to decreases diversity 

and richness of microbial community, as observed in a previous study (Wang et al., 

2014; Sun et al., 2021). This also explains the lower microbial richness in AW samples, 

as compared to FW (Fig. 2). 
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The correlation analysis between dominant genera and water quality parameters 

revealed that Vibrio and Pseudomonas in the AS samples showed significantly positive 

relationships with orthophosphate-P and nitrite-N, and strong negative connections with 

pH and temperature (Fig. 5). Vibrio and Pseudomonas are generally recognized as 

opportunistic pathogens in aquaculture. Vibriosis caused by Vibrio species has emerged 

as a serious concern in shrimp aquaculture due to the sudden outbreak and rapid spread 

of the infection, and lack of safe and efficient controlling agents (Lightner, 2005; 

Ananda Raja et al., 2017). Among the Vibrio species, V. parahaemolyticus, V. cholerae 

and V. vulnificus have been reported as the most harmful species to aquaculture 

organisms, causing huge economic losses in shrimp farming industry (Kumar et al., 

2014; Cao et al., 2015; Zhang et al., 2016). Most Vibrio species are oxidase-, indole-, 

and citrate-positive, and can reduce nitrate to nitrite. Furthermore, these Vibrio species 

can also hydrolyze carbohydrates, lipids, and proteins, and degrade starch, gelatin, 

lignin, chitin, and alginate through extracellular enzymes (Farmer and Hickman-

Brenner, 2006; Li et al., 2017; Grimes, 2020; Sampaio et la., 2022; Noorianet al., 2023). 

Therefore, Vibrio species play a crucial role in nitrogen and carbon cycling in the 

aquatic environments. In addition to carbon and nitrogen, phosphorus has also been 

reported as a main factor affecting the distribution of Vibrio communities (Gregoracci 

et al., 2012). Pseudomonas, as a denitrifying bacterium, is important for nitrogen 

removal (Huang et al., 2015; Zhao et al., 2018; Gao et a., 2019). According to previous 

studies. some species of Pseudomonas can directly reduce nitrate to gaseous nitrogen 

without accumulating nitrite, while some species possess a two-phase denitrification 

process; for others species of Pseudomonas, low nitrite accumulation has been reported 

(Su et al., 2001; Sun et al., 2017). Nitrite is one of the key factors affecting the water 

quality in aquaculture. At a concentration of more than 6.67 mg/L, nitrite can be 

detrimental to shrimps (Huang et al., 2020). A high level of nitrite has been reported to 

affect the growth, moulting, feed intake, oxygen consumption, ammonia excretion, 

nutritional modulation, energy metabolism, antioxidant capacity and disease resistance 

in shrimps (Chen and Chen, 1992; Cheng and Chen, 1998; Tseng and Chen, 2004; 

Wang et al., 2015; Guo et al., 2016; Li et al., 2019; Xiao et al., 2019). In this study, the 

nitrite concentration was 0.01-3.58 mg/L, and no disease was observed in whiteleg 

shrimp, which might be related to the effective microbial nitrogen-cycling network. 

Conclusions 

Overall, high-throughput sequencing revealed that Proteobacteria, Bacteroidota and 

Actinobacteriota were the dominant phyla in the whiteleg shrimp aquaculture system. As 

aquaculture proceeded, the relative abundance of Proteobacteria in FW initially increased 

and then started to decline, whereas abundance of Bacteroidota and Actinobacteriota 

initially declined and then increased. In AW samples, Proteobacteria, Bacteroidota and 

Actinobacteriota showed opposite trends. In addition, microbial richness in AW samples 

was significantly lower than that in FW. Furthermore, noteworthy differences were 

observed between the predicted functions of microbial communities in FW and AW 

samples, with carbon metabolism as well as metabolism of glycine, serine and threonine 

increasing significantly in the AW samples. Marivita, Candidatus Aquiluna, Donghicola 

and Polaribacter played important roles in sequestration of carbon and reduction of 

nitrogen. Temperature, nitrite-N, ammonia-N, salinity, nitrate-N, and pH were found to be 

the key factors affecting the microbial communities. 
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APPENDIX 

Table A1. Water quality parameters in the FW and AW 

Samples Date 
T 

(℃) 

S 

(g/L) 

DO 

(mg/L) 
pH 

Ammonia-N 

(mg/L) 

Nitrate-N 

(mg/L) 

Nitrite-N 

(mg/L) 

Orthophosphate-P 

(mg/L) 

FW 

Feb 27 28.92 29.12 6.35 8.10 0.06 1.07 0.01 0.00 

Mar 9 28.78 30.38 6.75 8.12 0.03 1.06 0.02 0.04 

Mar 19 20.43 31.94 7.59 8.14 0.07 1.00 0.08 0.10 

Mar 29 24.66 31.66 6.94 8.28 0.01 0.63 0.01 0.06 

Apr 8 21.57 32.71 7.41 8.25 0.03 0.33 0.01 0.06 

Apr 18 21.13 32.87 7.33 8.40 0.02 0.49 0.02 0.06 

Apr 28 24.31 31.42 6.80 8.28 0.03 0.44 0.08 0.07 

May 8 22.55 32.67 7.11 8.42 0.01 0.17 0.02 0.06 

May 18 23.71 32.03 6.89 8.45 0.01 0.25 0.01 0.05 

May 28 25.00 32.44 6.60 8.42 0.02 0.15 0.02 0.05 

Average 24.11  31.72  6.98  8.29  0.03  0.56  0.03  0.06  

AW 

Feb 27 29.69 29.91 6.57 8.42 1.39 2.00 0.19 0.10 

Mar 9 30.56 29.94 5.95 8.23 1.99 1.49 1.82 0.17 

Mar 19 28.48 31.16 6.57 8.22 0.83 1.92 2.37 0.23 

Mar 29 28.92 32.22 6.17 8.10 1.37 0.88 2.50 0.26 

Apr 8 27.32 32.58 5.77 7.98 2.34 1.52 2.91 0.40 

Apr 18 27.79 33.23 6.23 8.14 1.18 0.54 3.58 0.43 

Apr 28 27.85 32.68 6.16 8.06 1.27 1.16 2.97 0.41 

May 8 28.01 33.25 6.48 8.26 1.24 0.95 1.64 0.22 

May 18 28.01 33.03 6.27 8.20 1.59 0.78 1.73 0.32 

May 28 28.04 32.91 6.60 8.32 1.56 1.55 1.95 0.36 

Average 28.47  32.09  6.28  8.19  1.48  1.28  2.16  0.29  

 


