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Abstract. Air pollution is a critical global issue affecting human health. This paper introduces the Air Pollution 

Spectrum (APS), a multi-pollutant evaluation model (CO, NO2, PM10, PM2.5, O3, and SO2) that surpasses the Air 

Quality Index (AQI) by reflecting both spatial quality and pollutant structure. This paper uses the Bayesian space-

time hierarch piecewise regression model (BSTHPRM) to study the spatio-temporal evolution characteristics of 

the APS in China at the prefecture level (2015-2020). At the same time, the spatio-temporal characteristics of the 

APS component structure are also explored. We found higher levels of air pollution in Central, North, Northwest, 

and East China and lower air pollution levels in Southwest, South, and Northeast China. The change in APS 

values in Chinese cities during the study period is divided into two stages: in the first stage, the local change trend 

is rapid in Northwest, Southwest, and North China and slow in Central and Northeast China; in the second stage, 

the local change trend is fast in Northeast China and slow in Northwest and Southwest China. Spatial distribution 

and variation trends suggest that regional differences in APS values are narrowing. The APS component structure 

also has significant spatio-temporal distribution characteristics. O3 has gradually become one of the main 

pollutants involved in air pollution, and its importance is greater in North China, West China, and South China 

and smaller in Central China and East China. PM10 accounts for the largest, most stable proportion of air pollution 

in China and, in general, plays an important role in air pollution in most regions except some western regions. The 

importance of PM2.5 in air pollution in China has declined, with its importance greater in the central and eastern 

regions and smaller in the northern, western, and southern regions. The component structure of air pollutants at the 

prefecture level in China is changing significantly, with pollutants becoming more diverse. Parallel research on 

multiple pollutants has become an inevitable trend in air pollution research. 

Keywords: complex air pollution, spatio-temporal evolution, Bayesian statistics, air pollution values, air 

pollution component structure 

Introduction 

Air pollution is one of the most pressing environmental health issues facing humanity 

worldwide. The 2021 WHO Global Air Quality Guidelines highlighted that air pollution 

exposure leads to significant global health losses, causing millions of deaths and reduced 

healthy life years annually (WHO, 2021). Air pollutants stimulate pro-inflammatory 

responses in immune cells, including macrophages, neutrophils, dendritic cells, and 

lymphocytes (Glencross et al., 2020). There is a relationship between air pollutants such 

as ozone (O3), nitrogen dioxide (NO2), and particulate matter (PM) and asthma 

exacerbations, respiratory morbidity, and mortality in people with chronic obstructive 

pulmonary disease (COPD) (Kelly and Fussell, 2011). Both PM2.5 and PM10 air pollution 

are significantly related to adverse health effects, such as heart disease, stroke, blood 

pressure, and cardiovascular disease (Lee et al., 2014). Carbon monoxide (CO) is a highly 
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reactive compound that prevents oxygen from being absorbed into the bloodstream, 

causing dizziness, confusion, and death at high concentrations (Graber et al., 2007). 

Sulfur dioxide is a severe respiratory irritant associated with increased inflammation of 

the respiratory tract (Samal et al., 2019). According to Energy and Air Pollution, in terms 

of the lethal factors for humans worldwide, China ranked fourth for air pollution (Wang et 

al., 2017). Accordingly, the Chinese air pollution problem deserves greater attention. 

There are strong, complex links among air pollutants. Researchers found significant 

correlation characteristics between concentrations of PM2.5 and PM10, SO2, NO2, O3, and 

CO (Li et al., 2014, 2016). It was also found that PM2.5 responds to CO and O3, with 

PM2.5 having a strong positive correlation with CO (Fu et al., 2020). Synergies or 

antagonism between air pollutants can lead to complex nonlinear relationships between 

secondary aerosols and their precursors (Chu et al., 2016, Ma et al., 2018), such as the 

strong correlation between PM2.5 and NO2 concentrations during haze events (He et al., 

2014) as well as O3 and PM2.5 reductions from a decrease in gas precursors (Chu et al., 

2020). The common-origin, secondary nature of ground-level ozone and PM2.5 and their 

precursor interactions make their formation strongly coupled (Liao et al., 2008). Sulfur 

dioxide emissions (e.g., coal burning, ocean transportation, etc.) have a relatively high 

contribution to PM (Liao et al., 2008). NO2 and SO2 have a synergistic effect when 

reacting on the surface of mineral dust (He et al., 2014; Ma et al., 2018). In addition to the 

direct oxidation of SO2 in the atmosphere by O3 and NO2, O3 and NO2 in the atmosphere 

will also react (Zhang et al., 2021). To consider the combined relationship between air 

pollutants, summarizing the air quality status of complex mixtures of multiple pollutants 

into a number (e.g., a color pictogram or numerical representation), such as via the AQI, 

is beneficial for research and facilitates the accessible presentation of information to the 

public. An air pollutant is not independent but closely linked with other air pollutants and 

should be considered as a whole when considering air pollution. At this stage, there are 

very few studies considering the internal relationship of multiple pollutants and jointly 

judging their degree of air pollution. It is thus necessary to establish a comprehensive 

measure of air pollution that includes information on multiple air pollutants. 

This paper revises the AQI and proposes the Air Pollution Spectrum (APS), a new air 

pollution measurement index encompassing multiple pollutants. The APS constructed in 

this paper contains six major air pollutants (CO, NO2, PM10, PM2.5, O3, and SO2) at this 

stage and can not only reflect the spatial quality but also the component structure among 

the major pollutants. The APS has more advantages than the AQI in terms of the amount 

of information given about the pollutants and the differences between the reaction 

regions. China is a region with relatively serious air pollution. Thus, it is of great 

significance to explore the degree and component structure of air pollution at a Chinese 

prefecture level. Based on the BSTHPRM (Bayesian Space-Time Hierarchical Piecewise 

Regression Model) with an adaptive detection of local time inflection points and 

considering a spatial correlation, the spatio-temporal evolution characteristics of the APS 

values in China at the prefecture level during 2015-2020 were studied. At the same time, 

the spatio-temporal characteristics of the APS component structure were also explored. 

To comprehensively understand the status of air pollution and the composition of air 

pollutants in China, it is essential to consider the changes in the main air pollutants as well 

as minor air pollutants in various regions. This paper has two research purposes: to define 

the air pollution spectrum and present the calculation method used therein and to discover 

the temporal and spatial evolution characteristics (i.e., value and structure) of this 

spectrum at the prefecture level in China. 
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Data and methodologies 

Data source 

This study used observed air quality data from prefectures in mainland China for the 

period of 2015-2020. As early as January 2013, the Ministry of Environmental 

Protection of China (MEPC) started to grant access to air quality data (including PM2.5, 

PM10 [particulate matter with an aerodynamic diameter less than 10 mm], O3, NO2, SO2, 

and CO) at the national air quality monitoring sites of some major cities 

(http://datacenter.mep.gov.cn/). This study uses urban air quality monitoring data 

published by the Chinese Ministry of Ecology and Environment on its website 

(http://www.cnemc.cn/), which has been publishing national air quality data since 13 

May 2014. The air quality monitoring stations of China included 946 sites in 190 cities 

in 2014, 1494 sites in 367 cities in 2015, 1497 sites in 367 cities in 2016, 1563 sites in 

368 cities in 2017, 1601 sites in 369 cities in 2018, 1633 sites in 369 cities in 2019, and 

1641 stations in 367 cities in 2020. In addition, we calculated the annual average of the 

air quality data (including PM2.5, PM10, O3, NO2, SO2, and CO; i.e., the annual 

arithmetic mean of the arithmetic mean of the natural 24-h day monitoring values) as 

the air pollutant values. Values from observations at sites with fewer than 20 h in a day, 

27 days in a month (25 in February), or 324 days in a year were eliminated when 

calculating the annual average air pollutant concentrations (data sharing: 

https://github.com/wang-xiaoxian/wsx/blob/main/data.xlsx). The original data involved 

in this article totals 4,418,070 pieces. After the above data selection requirements, 

4,278,552 pieces of data remain after cleaning, and the cleared data accounts for 3.16%. 

Additionally, this study covers 337 cities in China. The green areas on the map in 

Figure 1 represent the prefecture-level cities included in the analysis. 

 

 

Figure 1. Map of the 337 prefecture-level cities in China 
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Research methods for the air pollution spectrum (APS) 

This paper introduces the Air Pollution Spectrum (APS), a multi-pollutant evaluation 

model (CO, NO2, PM10, PM2.5, O3, and SO2) that surpasses the Air Quality Index (AQI) 

by reflecting both spatial quality and pollutant structure. Both the APS and AQI consist 

of data simplifying the routinely monitored concentrations of several air pollutants into 

conceptual index values. Both are capable of providing a quantitative description of air 

quality, but the APS has more advantages: (1) The APS is a multi-pollutant-weighted 

comprehensive air quality evaluation model that assigns weights to six major air 

pollutant quality sub-indices and then sums them, providing the basis for determining 

the degree of local pollution by assigning larger weights to major pollutants and smaller 

weights to minor pollutants. The AQI only provides information on the primary 

pollutants. (2) The AQI can reflect the air quality level simply and intuitively, but it 

does not consider the correlation between multiple pollutants nor reflect the component 

structure of the six major air pollutants, while the APS can not only reflect the air 

quality condition and the contribution rate of each pollutant at different times and in 

different areas but also fully consider the association between each pollutant and other 

atmospheric pollutants. (3) Compared with the AQI, the APS can better reflect the 

difference in air pollution between regions. The following section specifies the steps for 

building the APS (three steps) and gives examples of the index’s advantages. The APS 

is defined as the air pollution comprehensive measurement index, which is the weighted 

sum of the Individual Air Quality Index (IAQI) of the six major atmospheric 

pollutants—that is, the sum of each IAQI value ( COIAQI , 
2NOIAQI , 

3OIAQI , 

10PMIAQI ,
2.5PMIAQI , 

2SOIAQI ) multiplied by the weight of each element (Fig. 2). 

 

 

Figure 2. Composition diagram of the APS 
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The following section will expand on the study of the atmospheric pollution 

spectrum and its spatio-temporal evolution characteristics. This paper employs the 

Exceedance Multiplier Method and the concept of comprehensive index construction to 

develop the APS, using Python for implementation. Next, the APS is analyzed using the 

Bayesian Space-Time Hierarchical Piecewise Regression Model to explore its spatio-

temporal evolution, with WinBUGS software employed for the analysis. Finally, the 

spatio-temporal evolution of the APS structure is analyzed using Python. Regarding 

map display, this paper uses ArcGIS for graphical representation. 

 

IAQI 

We calculated the mean IAQI mean values for each prefecture from 2015 to 2020 using 

Equation 1 according to the technical regulations of the ambient air quality index (HJ663-

2013, 2013). The IAQI is the air quality index of each air pollutant, which are 

dimensionless. 

 

 ( )Hi Lo
P P Lo Lo

Hi Lo

IAQI IAQI
IAQI C BP IAQI

BP BP

−
= − +

−
 (Eq.1) 

 

where PIAQI  is the index for pollutant p; PC  is the rounded concentration of pollutant 

p; HiBP  is the threshold that is greater than or equal to PC ; LoBP is the threshold that is 

less than or equal to PC ; HiIAQI is the AQI value corresponding to HiBP ; and LoIAQI  is 

the AQI value corresponding to LoBP . The IAQI and corresponding thresholds of each 

pollutant are displayed in Table 1. 

 
Table 1. IAQI and corresponding thresholds of the six pollutants 

IAQI 
Sulfur dioxide 

(SO2) (µg/m3) [24 h] 

Nitrogen dioxide 

(NO2) (µg/m3) [24 h] 

Carbon monoxide 

(CO) (µg/m3) [24 h] 

Ozone (O3) 

(µg/m3) [8 h] 

Particulate matter 

PM10 (µg/m3) 

[24 h] 

PM2.5 (µg/m3) 

[24 h] 

0 0 0 0 0 0 0 

50 50 40 2 100 50 35 

100 150 80 4 160 150 75 

150 475 180 14 215 250 115 

200 800 280 24 265 350 150 

300 1600 565 36 800 420 250 

400 2100 750 48  500 350 

500 2620 940 60  600 500 

 

 

Establishing weights 

In this paper, we use the Exceedance Multiplier Method, an objective weighting 

method that highlights the main factor17, as the weight of the IAQI. It assigns different 

weights according to the difference in the contribution of different indicators in each 

evaluated object. In an “longitudinal” dynamic comprehensive evaluation, each indicator 

is weighted by the exceeding multiplier method, and the weight is normalized, which not 

only takes into account the relative importance of each pollutant of the evaluated object at 

different times but also the different pollutants. The essence is to determine the weight 

according to the principle that the pollution of the pollutant is low, the weight is small, 

and the pollution is high, the weight is large. The specific calculation is as follows: 
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 (Eq.2) 

 

PW  represents the weight value of the p-th pollutant; Ps
 
represents the mean value of the 

five-level category standard for the p-th pollutant; and Px
 

represents the actual 

concentration of the p-th pollutant. In this paper, the reason for choosing the five classes 

of atmospheric pollutants as the criteria for calculating the weight of the air quality sub-

index is that ozone (O3) with an average 8-h concentration value above 800 3/g m  is 

no longer subject to its air quality sub-index calculation. If the existing six IAQI classes 

are used for the calculation of the IAQI weights, the relative importance of ozone (O3) 

and its contribution to the APS will be exaggerated. 

 

APS 

Based on the above calculation of the IAQI value and its weights, it is possible to 

derive its component structure. Specifically, the APS value in the i-th region in the t-th 

year is equal to the sum of the IAQI value of the six major air pollutants and the product 

of the corresponding weights. The calculation formula is as follows. 

 

 

1

P

P P

p

APS IAQI W
=

=   (Eq.3) 
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IAQI W
=
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=
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 (Eq.4) 

 

PSAPS  represents the proportion of the p-th pollutant in APS value for the i-th region 

in the t-th year. The sum of the six atmospheric pollutants’ SAPS at the same time in the 

same area is a constant sum, which is 1. 

The following are examples of the advantages of the APS. First, it is necessary to 

clarify the range of APS values. APS values are necessarily smaller than AQI values 

because AQI values only consider the primary pollutants and the calculation results in 

terms of the maximum values of the six IAQIs, while the APS is a combination of all 

the information on the six major pollutants and is a weighted value of the six air quality 

sub-indices. 

 

Bayesian space-time hierarchical piecewise regression model 

A developed Bayesian Space-Time Model was proposed by Li et al. (2019) and 

called a Bayesian Space-Time Hierarchical Piecewise Regression Model (BSTHPRM); 

it combines the ideas of the Bayesian Spatiotemporal Hierarchical Model BSTHM (Li 

et al., 2014) and the segmental regression model (Malash and El-Khaiary, 2010). The 

BSTHPRM not only incorporates spatial correlation into the spatial distribution 

characteristics of APS values but can also fully consider the diversification trend of 

APS values, capture the adaptive inflection point of the local trend, and explore the 
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nonlinear local trend of APS values. The six-year data can be decomposed into three 

stages of change at most. According to the data characteristics of the Chinese APS 

values (2015-2020) and Ockham’s Razor principle (Hoffmann et al., 1997; Gauch Jr, 

2003), the local change trend can be divided into two stages. The mathematical form of 

the BSTHPRM proposed in this paper is as follows: 

 

 
2

[i],t~ ( , )it M yy Normal    (Eq.5) 

 

 
1, [i][i], [i] 0 1, [i] 2, [i] 1, [i] , [i],log( ) ( v ) ( )*

t MM M t M M M t a M tS b t b t b t a G  = + + + + + − +  (Eq.6) 

 

 
1, [i] 1, [i]

, ( )

1

1M M
t a t a

G
e

− −
=

+
 (Eq.7) 

 

 1, [i] ~ (2,T 1)Ma Uniform −  (Eq.8) 

 

 [i],t ~ (0, . )M dnorm prec e  (Eq.9) 

 

 1, [i] 1, [i]M MK b=  (Eq.10) 

 

 2, [i] 1, [i] 2, [i]M M MK b b= +  (Eq.11) 

 

 [i] [i]exp( )M MSR S=  (Eq.12) 

 

where ity  is the annual average APS value of the i-th pixel at year t; [i],tM  is the mean 

parameter of the M[i]-th multiscale statistical unit; 
2

y  is the corresponding variance; 

and α is the overall APS values of the mainland China prefectures during 2015-2020. 

[i]MS  is the local intercept terms of the M[i]-th multiscale statistical unit; 0 tb t v+  

describes the overall time trend containing a linear 0b  and a nonlinear tendency tv , the 

prior distribution of which adopted a Gaussian distribution; 1, [i]Mb  and 2, [i]Mb  are local 

piecewise linear regression coefficients; and 1, [i]Ma  denotes the turning points of the 

M[i]-th multiscale statistical unit. The corresponding linear variation parameters are 

1, [i]Mk  and 2, [i]Mk . The term [i],tM  is a Gaussian noise error with a prior distribution 

assigned as a normal distribution 
2(0, )N  . Through the BSTHPRM, the spatial relative 

magnitude of APS values in the M[i]-th multiscale statistical unit, denoted as [i]MSR , 

quantifying the APS pollution level relative to the overall level, can be estimated. The 

parameters 1, [i]Mb , 2, [i]Mb , and 1, [i]Ma  are considered simultaneously spatial, structured, 

and unstructured random effects through the assignment of the Bayesian image model 

(Besag et al., 1991). The construction of the three regression parameters is based on the 

conditional autoregressive (CAR)-normal prior of the first-order spatial adjacency 

matrix. The spatial correlation was established based on the topological relationships of 

multiscale statistical units. In this paper, the Bayesian statistical estimate was 
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implemented by WinBUGS (Lunn et al., 2000) based on the Markov chain Monte Carlo 

(MCMC) algorithm. The convergence of the Bayesian inference results was judged by 

standard autocorrelation plots and trace plots. 

Results 

Descriptive statistical result 

Studying the APS numerical levels of 337 cities in China during 2015-2020, it can be 

concluded that the spatial pattern of APS value is roughly stable (Fig. 3); however, 

certain differences were found between the study years, including obvious spatio-

temporal trends. The area with the most serious APS pollution during 2015-2020 was 

Xinjiang, where Kashgar and Hotan exhibited the national air pollution peak areas in 

2015–2016 and 2017–2020, respectively. Over the six years, the APS peaks reached 

161.42 (i.e., Kashgar), 294.67 (i.e. Kashgar), 145.93 (i.e., Hotan), 245.75 (i.e., Hotan), 

164.49 (i.e., Hotan) and 189.52 (i.e., Hotan), respectively. The area with the best APS 

quality in 2015–2020 was Inner Mongolia, with XilingolLeague and HulunBuir being 

the areas with the best air quality in the country in 2015–2016 and 2017–2020, 

respectively. Over the six years, APS values were 30.09 (i.e., XilingolLeague), 30.87 

(i.e. XilingolLeague), 28.23 (i.e., HulunBuir), 23.81 (i.e., HulunBuir), 23.37 (i.e., 

HulunBuir) and 21.63 (i.e., HulunBuir), respectively. 

 

 

Figure 3. Map of national annual average APS values during 2015-2020. Blank areas are 

areas where data is missing 

 

 

The APS values of Chinese cities have declined each year while the air quality has 

gradually improved during 2015-2020. The average APS values in Chinese cities over 

the six years were 51.47, 47.65, 45.10, 42.41, 38.65, and 35.02, respectively, 

demonstrating a decreasing trend with time (Fig. 4). The APS values corresponding to 
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the seven major geographical divisions in China decreased by 25.35%–40.22%. Central 

China had the largest drop in the APS value (i.e.,40.22%), while Northwest China had 

the smallest drop in the APS value (i.e.,25.35%). At the same time, the APS levels in 

North China (the APS annual average:52.73), Central China (the APS annual 

average:50.45), and Northwest China (the APS annual average:52.25) were higher, and 

the APS levels in South China (the APS annual average:31.85), Southwest China (the 

APS annual average:32.79), and Northeast China (the APS annual average:38.19) are 

lower; meanwhile, the APS levels in East China (the APS annual average:44.63) and the 

whole country (the APS annual average:43.38) are comparable. 

 

 

Figure 4. Time series polyline of APS in China as a whole and for the seven geographical 

regions during 2015-2020 

 

 

Examples of APS advantages 

Compared with the AQI, the APS can better reflect the difference in air pollution 

between regions. Specifically, the coefficients of variation (CV) of the APS values for 

the Chinese prefectures from 2015 to 2020 were 0.37, 0.45, 0.34, 0.43, 0.34, and 0.38, 

respectively, while the CVs of the AQI values for the prefectures were 0.3, 0.35, 0.28, 

0.35, 0.29, and 0.31, respectively. Meanwhile, the APS value was necessarily larger 

than the arithmetic mean of the six IAQIs because the exceedance multiplier method 

was assigned a larger weight for important air pollutants and a smaller weight for minor 

air pollutants, highlighting the importance of heavy pollutants in the APS. The 

discrepancy between the APS and the AQI is mainly reflected in the fact that air 

pollution consists of a variety of major pollutants (e.g., the IAQI values of CO, NO2, O3, 

PM10, PM2.5, and SO2 in Hotan in 2020 were 25.05, 34.07, 34.29, 195.18, 172.12, and 

15.43, respectively, and the AQI was 195.18, while the APS had a value of 189.51. The 

APS assigned weights to the IAQI according to the importance of the atmospheric 

pollutants, the rapid industrialization of the Hotan area, and the main pollutants of PM2.5 

and PM10, the weights of which were 52.19% and 48.63% respectively, while the AQI 

only considered the primary pollutant PM10 and set its PM10 to 100%. The variability in 

the APS and the IAQI expectations is mainly reflected in the presence of heavy 
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pollutants in air pollution, (e.g., the IAQI values of CO, NO2, O3, PM10, PM2.5 and SO2 

in Ali in 2020 were 13.31, 14.61, 47.27, 14.33, 8.39, and 10.91, respectively, and the 

average value of IAQIs was 20.22, while the APS value was 32.71. The reason for this 

difference is that the green plants in the Ali area would release VOC during the peak 

growth period, which would then be directly or indirectly converted into ozone, at the 

same time, the highland cities had strong UV rays, which produced ozone by irradiating 

the ground and having an oxidizing effect on oxygen, resulting in a higher ozone 

concentration. The weight of ozone in the APS calculation was 59.63%. 

 

Bayesian spatio-temporal statistical results 

Based on the BSTHPRM, with posterior mean estimation of the steady-state spatial 

relative magnitude of the 337 Chinese cities, the APS values in China can generally be 

divided into three grades: cold spot, warm spot, and hotspot. In particular, the spatial 

units were identified as hot, warm, and cold spots when the posterior probability of 

[i]MSR  [i]( 1 )M itP SR y  was > 0.80, between 0.20 and 0.80, and < 0.20, respectively 

(Richardson et al., 2004). Second, with posterior mean estimation of local trends in the 

337 cities in China, the Chinese APS can be roughly divided into three levels: 

decreasing, stable, and increasing. Based on the posterior probability of the local trend 

parameters , [i]( 0 )r M itP K y (r = 1, 2), the spatial units could also be classified into three 

categories: > 0.80, between 0.20 and 0.80, and < 0.20, respectively. 

 

Overall spatial trends 

The presented BSTHPRM in this paper estimated the overall spatial relative 

magnitude of the APS values, namely the overall spatial patterns, based on the 

simultaneous consideration of the space–time interaction during 2015-2020. The overall 

spatial trend—i.e., the overall relative spatial magnitude—of the APS from 2015 to 

2020 was quantitatively described (Fig. 5) by the coefficient SRM[i], whose value 

indicated the magnitude of the APS in the multiscale subdivided grid, M[i], relative to 

the overall average level, exp( ) . Overall, the APS in Central China (Average value of 

SRM[i]:1.18), North China (Average value of SRM[i]:1.27), Northwest China (Average 

value of SRM[i]:1.09), Northeast China (Average value of SRM[i]:1.08) and East China 

(Average value of SRM[i]:1.11) were relatively high, while those in Southwest China 

(Average value of SRM[i]:0.78) and South China (Average value of SRM[i]:0.77) were 

relatively low. This may be partly attributed to the fact that air pollution is influenced 

by climate and economy, with high greening in southern regions with high climatic 

rainfall and high traffic density and industrialization in economically developed regions. 

About 40.06% of the cities in the country were considered to the APS hotspots, and 

these cities occupied 28.40% of the land area of Chinese cities. Northwest China 

accounted for the largest proportion of land area in the APS hotspots—about 37.82%. 

The APS hotspots in Shaanxi and Ningxia in Northwest China accounted for more than 

60% of the total number of prefecture-level cities in each province, and the top two with 

the highest relative risk of the APS in Xinjiang were Hotan 2.41 (95%CI: 1.94, 2.87) 

and Kashgar 2.47 (95%CI: 2.05, 2.88). The specific implication expressed by the 

coefficient was that the air pollution levels in Hotan and Kashgar were respectively 2.41 

and 2.47 times the national overall level. Moreover, 28.89% of the hotspots were from 

East China, which had the largest number of cities in hotspots. In East China, 92.31% of 
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Jiangsu cities, 93.75% of Shandong cities, and 75% of Anhui cities were the APS 

hotspots. The spatial relative risk of the APS values corresponding to these cities was 

1.08–1.71, indicating that the corresponding air pollution level was 1.08–1.71 times the 

national overall level. 

 

 

Figure 5. The overall spatial, relative magnitudes (the posterior means of the parameter [i]MSR ) 

of the Chinese APS considering the space-time interaction during 2015-2020 based on the 

presented BSTHPRM 

 

 

About 18.99% of the cities in the country were considered to the APS warm spots, 

and warm spots accounted for 18.68% of the urban area in China. The proportion of 

cities and the proportion of land area in the warm spots in Northwest China were both 

the largest, with a ratio of 28.13% and 51.71%, respectively. All provinces in the 

Northwest were the APS warm spots. Among them, Gansu’s APS temperature-spot area 

accounted for 71.43% of the total number of cities in the province, indicating that the 

level of air pollution was comparable to the overall level of the country. 

About 40.95% of the cities in the country were considered to the APS cold spots, and 

cold spot areas occupied 52.49% of the land area of Chinese cities. More than one-third 

of the cities in the APS cold spots were concentrated in the southwest region, and these 

cities accounted for 45.66% of the land area in all cold spots. 66.67% of Sichuan cities 

and all areas of Chongqing, Guizhou, Yunnan, and Tibet were the APS cold spots. 

Among the top ten cities with the lowest spatial relative risk of APS values, six were 

occupied by the southwest region, represented by Diqing Tibetan Autonomous 

Prefecture 0.62 (95% CI: 0.51, 0.73), Dali Bai Autonomous Prefecture 0.65 (95% CI: 

0.53, 0.78), and Qianxinan Buyi and Miao Autonomous Prefecture 0.65 (95% CI: 0.53, 

0.78), which corresponded to air pollution levels 0.62, 0.65, and 0.65 times higher than 

the national overall level, respectively. 

 

Local trends 

Figure 6 illustrates the estimated result of the turning point of the local trend in the 

APS value in each multiscale statistical unit, namely parameter 1, [i]Ma  of the 

BSTHPRM. The turning year equals 2014 plus the integer of 1, [i]Ma —e.g., if 1, [i]Ma  is 

3.6, then the turning year is 2007. Specifically, the 1, [i]Ma  of the 332 cities was 3, the two 
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stages of the local APS values trends in these 332 cities were divided into 2015–2017 

and 2018–2020; the 1, [i]Ma  of the four cities of Naqu, Urumqi, and Kashgar was 2, the 

two stages of the local APS values trends in these cities were divided into 2015–2016 

and 2017–2020; the 1, [i]Ma  of Turpan and Hotan was 4, and the two stages of the local 

APS values trends in these cities were divided into 2015–2018 and 2019–2020. The 

local change trends of the two stages are further analyzed below. 

 

 

Figure 6. Spatial distribution of the turning point of the local trend of the Chinese cities’ APS; the 

posterior mean of the parameters, 1, [i]Ma ; the turning year equals 2014 plus the integer of 1, [i]Ma  

 

 

In the first stage, the local change trend in the APS values in Northwest China 

(Average value of K1,M[i]: 0.03) and South China (Average value of K1,M[i]: 0.01) was 

increasing, while the local change trend in the APS values in Central China (Average 

value of K1,M[i]: -0.01) and Northeast China (Average value of K1,M[i]: -0.02) was more 

strongly decreasing (Fig. 7). About 25.52% of the cities’ APS in the country had an 

increasing in the first stage, where the APS value increasing accounted for 43.96% of 

the land area of Chinese cities. The proportion of cities and the proportion of land area 

in Northwest China with an increasing trend were both the largest at 40.70% and 

57.66%, respectively. Among these northwest cities, the posterior probabilities of the 

local trend parameters , [i]( 0 )r M itP K y  were greater than 0.8, and Xinjiang possessed 

nine of the top ten cities with the fastest APS values local change trend. The local 

change trend in the APS values corresponding to these cities were 0.06–0.13, indicating 

that the corresponding the air pollution spectrum pollution change speed was 1.06–1.14 

times the national overall level. In the first stage, about 46.88% of the cities’ APS in the 

country had a stable trend, accounting for about 37.19% of the land area of Chinese 
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cities. Southwest China had the largest proportion of land area in the APS stable—about 

36.33%. More than half of the cities in Yunnan, Guizhou, and Sichuan were considered 

to the APS stable. There was no significant difference in the rate of change and overall 

level of urban air pollution. About 27.60% of the cities’ APS in the country had a 

decreasing trend in the first stage, accounting for 18.85% of the land area of Chinese 

cities. The decreasing trends of the APS were mainly concentrated in Northeast China 

and North China. In 75% of Northeast China cities, the posterior probabilities of the 

local trend parameters , [i]( 0 )r M itP K y  were less than 0.2, and North China accounted for 

half of the top ten cities with the smallest APS values local change trend. 

 

 

Figure 7. Spatial pattern of the first-stage local trends (the posterior means of the 

parameter, 1, [i]MK ) of the Chinese cities’ APS from 2015 to the turning year, 2014 plus the 

integer of 1, [i]Ma  

 

 

In the second stage, the local growth trend in the APS value in Northeast China 

(Average value of K2,M[i]: 0.17) and East China (Average value of K2,M[i]: 0.03) was found 

to be increasing, while the local growth trend in Northwest (Average value of K2,M[i]: -

0.11), Central China (Average value of K2,M[i]: -0.05) and Southwest China (Average 

value of K2,M[i]: -0.03) was more strongly decreasing (Fig. 8). About 16.02% of the cities’ 

APS in the country had an increasing trend in the second stage, and areas with a strong 

change accounted for 17.67% of the land area of Chinese cities. Northeast China is the 

representative in that the APS value showed an increasing trend, and the posterior 

probabilities of the local trend parameters , [i]( 0 )r M itP K y  were more than 0.8. Northeast 

China accounted for 70% of the top ten cities with the fastest local APS changes. The 

highest yearly increases in Northeast China were 1.33 (95%CI: 1.01, 1.76) per year, 1.29 

(95%CI: 1.04, 1.61) per year, and 1.28 (95%CI: 1.04, 1.57) per year. There were 212 

cities’ APS across the country that had a second-stage stable trend, accounting for nearly 

half of the land area of Chinese cities. A decreasing trend of the APS accounted for 

32.39% of the land area of Chinese cities, with Northwest China representing 71.02% the 

decreasing trend. Among the top ten cities with the slowest local change trend of the APS, 

Northwest China represented 80%, namely Kashgar, Hotan, Kizilsu Kirgiz Autonomous, 

Aksu, Turpan, Urumqi, Xianyang, and Xi’an. The local change trends in APS values in 

cities were -0.58–-0.16, indicating that the corresponding change rates in air pollution 

were 0.56–0.85 times the national overall level. 
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Figure 8. Spatial pattern of second-stage local trends (the posterior means of the parameter, 

2, [i]MK ) of the Chinese cities’ APS from the turning year, 2014 plus the integer of 1, [i]Ma , to 2020 

 

 

The local APS values trends in China at the prefecture level were divided into two 

stages from 2015 to 2020 and showed opposite characteristics. One possible reason for 

this result is the change in China’s industrial structure and energy consumption over the 

study period, such as the emphasis on industrial development and high energy 

consumption in Northwest China, Southwest China, and North China in the early 

period. Combined with the existing spatial distribution characteristics of the APS 

values, the opposing local variation trends between the two phases would lead to 

smaller spatial differences (Table 2). 

 
Table 2. Estimated values of the key parameters of the selected and representative multiscale 

statistical units 

Province City SRM[i] (95% CI) K1,M[i] (95% CI) K2,M[I] (95% CI) 1, [i]Ma
 

Inner Mongolia 
XilingolLeague 0.91 (0.77, 1.09) -0.01 (-0.04, 0.03) 0.16 (0.02, 0.33) 3.5 

HulunBuir 0.84 (0.66, 1.05) -0.03 (-0.08, 0.02) 0.22 (-0.01, 0.44) 3.8 

Beijing Beijing 1.31 (1.10, 1.54) -0.06 (-0.09, -0.02) -0.03 (-0.20, 0.14) 3.6 

Hebei 

Xingtai 1.70 (1.46, 1.96) -0.05 (-0.08, -0.02) -0.14 (-0.28, -0.00) 3.4 

Baoding 1.59 (1.38, 1.82) -0.06 (-0.09, -0.03) -0.16 (-0.29, -0.02) 3.1 

Langfang 1.42 (1.19, 1.68) -0.05 (-0.09, -0.02) -0.04 (-0.21, 0.13) 3.6 

Hengshui 1.61 (1.37, 1.89) -0.07 (-0.11, -0.04) -0.13 (-0.28, 0.02) 3.3 

Yunnan 
Dali Bai 0.65 (0.53, 0.783 0.02 (-0.02, 0.06) 0.06 (-0.11, 0.25) 3.5 

Diqing Tibetan 0.62 (0.51, 0.74) 0.02 (-0.02, 0.06) 0.05 (-0.12, 0.21) 3.5 

Tibet Naqu 0.84 (0.73, 0.97) 0.00 (-0.04, 0.03) -0.17 (-0.31, -0.03) 2.7 

Guizhou Qianxinan Buyi 0.65 (0.53, 0.78) -0.01 (-0.05, 0.04) 0.04 (-0.13, 0.22) 3.5 

Shaanxi 
Xi’an 1.27 (1.08, 1.48) 0.02 (-0.01, 0.05) -0.16 (-0.31, -0.02) 3.7 

Xianyang 1.30 (1.11, 1.51) 0.03 (0.01, 0.06) -0.16 (-0.31, -0.02) 3.8 

Xinjiang 

Turpan 1.37 (1.12, 1.64) 0.06 (0.03, 0.10) -0.22 (-0.40, -0.04) 4.1 

Hami 1.02 (0.84, 1.21) 0.06 (0.02, 0.09) -0.07 (-0.25, 0.10) 3.6 

Changji 1.09 (0.91, 1.29) 0.06 (0.03, 0.10) -0.14 (-0.32, 0.04) 3.9 

Bayingolin Mongolian 1.06 (0.90, 1.25) 0.05 (0.02, 0.08) -0.15 (-0.28, -0.03) 3.5 

Aksu 1.69 (1.42, 1.99) 0.07 (0.03, 0.11) -0.34 (-0.49, -0.19) 3.5 

Kizilsu Kirgiz 1.52 (1.24, 1.88) 0.09 (0.04, 0.15) -0.37 (-0.60, -0.17) 3.9 

Hotan 2.41 (1.94, 2.87) 0.13 (0.10, 0.16) -0.40 (-0.61, -0.25) 4.8 

Hi Kazak 0.93 (0.76, 1.10) 0.06 (0.02, 0.10) -0.11 (-0.29, 0.06) 3.6 

Tacheng 0.75 (0.62, 0.89) 0.05 (0.02, 0.09) -0.05 (-0.23, 0.13) 3.4 
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APS component structure results 

Time variation characteristics 

In general, the APS of the prefecture-level cities in China during 2015-2020 showed 

strong temporal variability (Fig. 9). The importance of CO in terms of the APS of Chinese 

prefecture-level cities was relatively stable over the six years. From 2015 to 2016, the 

proportion of NO2 in the APS of Chinese prefecture-level cities increased significantly, 

while its proportion has remained stable since 2016. The importance of O3 in the APS of 

Chinese prefecture-level cities was found to first decrease and then increase, with the 

change in this proportion found to be relatively significant; O3 gradually became one of the 

major pollutants in urban air pollution. PM10 accounted for the largest share of the APS, 

and it was relatively stable over the study period. The importance of PM2.5 and SO2 in the 

APS in Chinese cities decreased year by year, as reflected by their gradually decreasing 

values. In the literature, PM2.5 has always been an important, mainstream air pollution 

research subject; however, through this study, we found that the importance of PM2.5 in air 

pollution has been weakening each year, indicating that the parallel study of multiple 

pollutants has become an inevitable trend in air pollution research. 

 

 

Figure 9. The APS component structure map of overall China and the seven major geographic 

regions in China during 2015-2020 

 

 

The component structure of the APS in all regions of China had a more pronounced 

time-varying feature. In North China, the proportion of particulate matter in the APS 

changed significantly: the importance of PM2.5 in air pollution decreased significantly 

each year, while PM10 gradually became the main pollutant, accounting for more than 



Wang et al.: Spatio-temporal evolution of the air pollution spectrum in China at the prefecture level (2015-2020) 

- 2518 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(2):2503-2525. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2302_25032525 

© 2025, ALÖKI Kft., Budapest, Hungary 

40%. The values of PM2.5 and SO2 as a percentage of the APS in Northeast China were 

found to decrease each year. Furthermore, the proportion of NO2 in the APS in East China 

had a tendency to become larger each year, and PM2.5 had a opposite change compared to 

NO2, and the proportion of SO2 in the APS first increased and then decreased. The 

importance of O3 in the APS in Central China increased each year; meanwhile, the 

proportion of PM10 in the APS first increased and then gradually stabilized, becoming the 

main pollutant in air pollution. The proportion of NO2 and PM10 in the APS in South 

China was increasing first and then gradually stabilizing, the importance of O3 in APS 

was weakening first and then increasing, and the change of PM2.5 was opposite. The 

importance of PM2.5 in the APS decreased year by year in the Southwest China, and NO2 

had the opposite performance. The proportion of NO2 in the APS in Northwest China first 

increased and then gradually stabilized, while the proportion of O3 in the APS first 

decreased and then increased. The proportion of PM2.5 in the APS first increased and then 

decreased, and the importance of SO2 in the APS decreased. The conclusion is that the 

component structure of air pollutants has been undergoing major changes, with the main 

air pollutants tending to be diversified. In the context of regional air pollution research, 

the significance of single-pollutant research is continuously decreasing, while parallel 

research on multiple pollutants has become an inevitable trend. 

The characteristics of the temporal changes in the APS component structure of the 

Chinese prefecture-level cities from 2015 to 2020 can be divided into two broad 

categories: the APS component structures is stable or highly variable (Fig. 10). For 

example, Huludao and Zhanjiang were cities with a stable APS component structure, with 

the ratio of each component in the APS not significantly changing during 2015-2020. 

Furthermore, the large changes in the component structure of the APS can be divided into 

two categories: changes in the major pollutant types in the APS and large changes in the 

proportion of air pollutants in the APS. For example, during the study period, the main air 

pollutant in Beijing changed from PM2.5 to PM10 and the main air pollutant in Hulunbuir 

changed from PM10 to O3. The major air pollutants in Suzhou and Hangzhou tended to be 

diversified, resulting in a high variability in pollutant values in the APS. 

 

 

Figure 10. The APS component structure change map of selected representative cities 

 

 

Spatial distribution characteristics 

In general, the APS of the prefecture-level cities in China during 2015-2020 showed 

strong spatial variability (Fig. 11). The proportion of atmospheric pollutant CO in the 

APS in the southern region (accounting for 3.51%) was higher than that in the northern 

region (accounting for 2.82%). Moreover, the difference in the proportion of each 

pollutant in regions of higher atmospheric quality was reduced—i.e., the proportion of 

the atmospheric pollutant of CO (the most minor of the air pollutants) in the APS was 

significant in regions with small APS values. The spatial distribution of atmospheric 
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pollutant NO2 in the APS was higher in the eastern (accounting for 11.99%) and lower 

in the central regions (accounting for 9.32%); this was due to the large emissions of 

NO2 in the eastern, which plays an important role in the APS component structure. The 

large proportion of O3 in the APS in western (accounting for 26.09%) and southern 

China (accounting for 25.52%), the small proportion of O3 in the APS in central 

(accounting for 18.88%) and northern China (accounting for 19.15%) stemmed from the 

strong radiation, long light hours, and high temperatures in western and southern China, 

which strongly contribute to the production of O3. PM2.5 in central (accounting for 

26.48%) and northern China (accounting for 24.55%) accounted for a large proportion 

in the APS, while PM2.5 in eastern (accounting for 22.83%), western (accounting for 

18.18%) and southern China (accounting for 21.05%) accounted for a small proportion. 

PM2.5 stems from daily power generation, industrial production, and automobile exhaust 

emissions. The central and eastern regions of China were undergoing high 

industrialization at the time and had correspondingly high PM2.5 concentrations. Except 

for some western regions, PM10 took on an important role in air pollution in most of 

China, as indicated by its high proportion in the APS. The national share of SO2 in the 

APS is all at a low level. 

 

 

Figure 11. Proportion of the six pollutants (including CO, NO2, O3, PM10, PM2.5, and SO2) in 

the APS component structure of Chinese cities during 2015-2020 (the proportion is divided into 

eight levels and no specific numerical description is made) 

 

 

The structural characteristics of the APS for each city were mainly reflected in the 

variability of the main pollutant types in each region. PM10, PM2.5, O3, and NO2 were 

among the major pollutants in the APS of Beijing and Tianjin. Industrial production 

emissions, motor vehicle exhaust emissions, and the incremental increase in population 

were the main reasons for these high PM10, PM2.5, and NO2 concentrations in Beijing and 

Tianjin. The main air pollutants in Northeast China as well as most cities of Shandong, 

Henan, Hebei, and Shanxi provinces were PM10 and PM2.5, which are attributed to the fact 
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that industrial production was still the dominant economic development model at the time 

of study. The main atmospheric pollutants in most Inner Mongolia cities were PM10 and 

O3, with the change in O3 concentration closely related to the weather situation. The main 

pollutant in South China was O3. The lower cloudiness, higher temperature, and higher 

relative humidity in this area, along with the higher precursor concentrations, very small 

near-surface wind speeds, and predominantly radiative dispersion, resulted in large 

amounts of O3 production. O3 became the primary air pollutant in most cities in Yunnan 

and Tibet, and the unique topography of the Tibetan Plateau itself along with its dynamic 

and thermal effects represented one of the main reasons for the formation of a high-value 

area in terms of total O3 over the Tibetan Plateau. The main pollutant in the atmosphere of 

most cities in Ningxia and Xinjiang was PM10, which was mainly due to the frequent sand 

and dust storms in the two provinces and the high concentration of respirable particulate 

matter in the atmosphere due to sand and dust return. 

Discussion 

One of the greatest issues of our time is air pollution, not only because of its impact on 

climate change but also because of its impact on public and personal health (Manisalidis 

et al., 2020). Severe and persistent air pollution in China is an immense burden in terms of 

residents’ health and financial wellbeing (Li et al., 2016). At the same time, a variety of 

air pollutants are not independent; instead, there are complex associations between air 

pollutants, where they interact with and transform each other. This is also the 

consideration and starting point of this paper: the linkage among atmospheric pollutants 

followed by the construction of an integrated measure of atmospheric pollutants (i.e., 

APS). It is necessary to establish a comprehensive measure of air pollution that includes 

information on multiple air pollutants. The APS constructed in this paper contains six 

major air pollutants (CO, NO2, PM10, PM2.5, O3, and SO2) at this stage; it is essentially a 

multi-pollutant weighted comprehensive air quality evaluation model. The six 

atmospheric pollutants (CO, NO2, PM10, PM2.5, O3, and SO2) each account for a certain 

proportion of the APS, where the sum of the weights is 1. Such an APS can reflect the 

atmospheric environmental quality conditions in different spatial and temporal conditions 

as well as the contribution rate of each pollutant and the component structure of 

atmospheric pollution. On this basis, in order to better understand the status of the air 

pollution spectrum in China, this paper investigated the spatial and temporal evolution 

characteristics of the APS value and APS component structure in Chinese cities during 

2015-2020. We realized that the main air pollutants tend to be diversified at this stage and 

that it is of little significance to limit research to only one kind of pollutant for air 

pollution control. The parallel study of multiple pollutants will be the inevitable trend in 

air pollution research. In this paper, six major pollutants (CO, NO2, PM10, PM2.5, O3, and 

SO2) were linked through the construction of the APS, and the results of the study can 

provide more practical references for Chinese policy considering multiple pollutants and 

synergistic air pollution control. 

Unexpectedly, the region with the most serious air pollution in China is Xinjiang, 

which is also ignored by other articles, but it can also be reasonably explained. 

According to Xue’s doctoral thesis (Xue, 2018), there are two factors that cause the 

above phenomenon: First, Xinjiang is the most resource-exporting region, and fossil 

energy enterprises have large emissions. The industrialization process will inevitably 

bring air pollution. Second, the area of extremely arid and arid areas accounts for 65.5% 
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of the total area of Xinjiang. If the semi-arid areas are included, it accounts for 88.7% of 

the total area of Xinjiang. Due to water shortage, vegetation is sparse in large areas of 

Xinjiang (Fan et al., 2020). The vegetation coverage rate in northern Xinjiang is only 

about 0.3%, and the vegetation coverage rate in southern Xinjiang is less than 0.1%. 

The dry climate and desertification cause air pollution (Xue, 2018). 

A general finding of previous studies is that O3 has gradually become the main 

pollutant in the atmosphere (Feng et al., 2015; Lu et al., 2018; Wei et al., 2022; Ou et 

al., 2022). At the same time, the impact of SO2 and NOX in Chinese cities cannot be 

ignored (Zhao et al., 2018; Zhang et al., 2021). Therefore, the study of air pollution 

should not be limited to a single pollutant, but should integrate multiple pollutants to 

evaluate air pollution, which is also the necessity of writing this paper. 

The literature consists of academic studies on overall air pollution that separately 

consider the six major air pollutants (CO, NO2, PM10, PM2.5, O3 and SO2) and studies on 

the AQI. Comparatively, the APS study in this paper has certain advantages, such as (1) 

the APS is a total air pollutant research index that can directly determine the degree of 

regional air pollution, while the study of six pollutants separately lacks the 

determination of the overall air pollution. (2) The APS fully considers the linkages 

among atmospheric pollutants and regards them as a whole with internal correlations, 

while previous scholars deny these linkages and study them separately. (3) The APS can 

reflect the main and secondary relationships of air pollutants in each region for each 

time period, while previous studies have not provided this information. Moreover, 

compared with the existing scholars who studied the AQI, the APS study in this paper 

has certain advantages, such as, (1) according to the calculation principle, the APS 

includes information on six major air pollutants, while the AQI reflects information on 

only one pollutant. (2) The AQI can reflect the air quality level simply, while the APS 

can not only reflect the air quality condition and the contribution rate of each pollutant 

at different times and in different spaces but also fully consider the interaction between 

each pollutant and the component structure of air pollutants. (3) Compared with the 

AQI, the APS can better reflect the difference in air pollution between regions. 

The APS constructed in this paper has profound implications for the study of air 

pollution, and the results of the study of the spatial and temporal evolution of APS value 

and the APS component structure will contribute to the policy planning of collaborative 

air pollution management. At the same time, the construction of APS is scalable, and it 

can be extended to global air pollution measurement, not only to explore the global air 

pollution level but also to explore the composition and structure of air pollution in 

various countries and regions. However, our study also has some limitations. First, the 

study needs a scientific and well-founded classification of air pollution levels based on 

APS values to help the public make an intuitive judgment about the air pollution 

situation. Furthermore, the APS can better reflect the differences in air pollution 

between regions than the AQI, but the APS requires rigorous mathematical proof. 

Conclusion 

Multi-pollutant air pollution (i.e., several pollutants reaching very high 

concentrations simultaneously) frequently occurs in many regions across China, it is 

necessary to construct a comprehensive index of air pollution (Hu et al., 2015). Many 

scholars have constructed indices to measure air pollution (Sowlat et al., 2011; Teologo 

et al., 2018; Haq, 2022; Zhang et al., 2022). This paper proposed an air pollution 
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measurement index that contains information on various air pollutants, called the Air 

Pollution Spectrum (APS). Based on the BSTHPRM model with an adaptive detection 

of local time inflection points and considering spatial correlation, the spatio-temporal 

evolution characteristics of APS values in Chinese cities from 2015 to 2020 were 

studied. At the same time, compared with other scholars who only focus on the degree 

of air pollution, this paper also explores the structure of air pollution, and specifically 

studies the spatio-temporal evolution characteristics of the air pollution structure. We 

have reached the following preliminary conclusions. 

Generally, the APS values of Chinese cities during 2015-2020 had significant spatial 

and temporal distribution characteristics, but the differences in the APS values between 

different regions were found to be decreasing over the study period. We found that the 

air pollution level was higher in Central China, North China, Northwest China, 

Northeast China and East China and lower in Southwest China and South China. 

Chinese cities’ APS changes were divided into two phases during 2015-2020, and these 

two phases showed opposite characteristics. Many scholars often only study the 

temporal characteristics of air pollution (Li et al., 2017a; Fan et al., 2020; Zhou et al., 

2021), and do not further study the regional characteristics under different time periods. 

This article does the above. Specifically, in the first stage, Northwest China and South 

China exhibited a faster trend of local change in air pollution, while Central China and 

Northeast China had a slower trend of local change in air pollution. In the second stage, 

Northeast China and East China had a faster local growth trend in air pollution, and 

Northwest China, Central China and Southwest China had a slower local growth trend 

in air pollution. The APS component structure also had significant spatio-temporal 

distribution characteristics. Many scholars focus on the spatio-temporal distribution of 

the absolute amounts of various pollutants (Li et al., 2017b; Fan et al., 2020; Lu et al., 

2022), ignoring the spatio-temporal distribution of the structure of atmospheric 

pollutants when they are components. This article does the above. First, the atmospheric 

structure changed over time, with O3 gradually becoming one of the main pollutants in 

urban air pollution, PM10 having the largest share in air pollution in Chinese cities but a 

relatively stable share in the APS, the importance of PM2.5 in air pollution in Chinese 

cities decreasing each year, CO and NO2 becoming less important in air pollution, and 

the share of SO2 decreasing each year. Furthermore, the APS component structure also 

had distinct spatial characteristics. The proportion of CO in atmospheric pollution was 

higher in the south than in the north, and the spatial distribution of the importance of 

NO2 in atmospheric pollution was found to be high in the east regions and low in the 

central regions. The importance of O3 in atmospheric pollution was large in western and 

southern China, small in central and northern China. Additionally, the importance of 

PM2.5 in atmospheric pollution was large in central and northern China, small in eastern, 

western, and southern China. PM10 took on an important role in air pollution in most of 

China, except for some western regions. SO2 was of little importance in air pollution in 

the whole country. The types of major pollutants in each region have changed in 

addition to their proportions in the atmospheric structure. 
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