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Abstract. The early selection of pure lines against stalk rot and inheritance pattern of physiological and nutritional 

traits under disease stress is the main problem faced by the breeders in developing countries. One hundred maize 

lines were assessed for stalk rot using both artificial and natural inoculation. Six generations (P1, P2, F1, F2, BC1, 

and BC2) produced from the pure lines showing consistent resistance (Y11, EL7) and susceptible (DR59, DR69) 

responses during two growing seasons. Genetic images of these lines were obtained using DNA-based makers 

(SSRs) by performing polymerase chain reaction in the department of Medicinal Chemistry, University of 

Minnesota, USA. Studied traits showed the dominating impact of additive gene action in both seasons. Nutritional 

traits (protein, oil and starch contents) mostly exhibited negative correlation with lesion length while other showed 

non-significant correlation during spring and autumn. A deep learning model (Inception-V3) was trained with 

genetic images to distinguish between resistant and susceptible lines. The model showed 95% accuracy in 

resistant line detections. Considering the impact of the illness on physiological and nutritional traits, the current 

study favored phenotypic based selection in physiological traits. The study also showed the adverse impact of 

disease on nutritional traits. The current research not only aids in the management of the disease in high-yielding 

varieties, but also aids in identifying the resistant lines earlier against stalk rot using image processing model. 

Keywords: additive, genetic images, deep learning, physiological, nutritional 

Introduction 

Maize quantity and quality can be improved by exploring its genetic potential 

(Shahini et al., 2023). Underdeveloped nations frequently, experience malnutrition 

(Rahut et al., 2024). The world population that rely on maize for their livelihoods have 
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achieved significant progress in the field of maize genomics research (Chakraborty et 

al., 2023). About 70% increase in staple foods would be required by 2050 to keep up 

with the population’s increasing demand (Soma et al., 2023; Li et al., 2024). Corn 

grains will supply more than half of the demands (Yan et al., 2011). Since corn’s oil is 

used as fuel in industry, the increase in oil prices after 1970 has given it more 

significance (Singh et al., 2001). 

Early maturing cultivars of maize differ in their physiological traits (Akamatsu et al., 

2024). The improvement in these traits might leave the field in time. Moreover, corn is 

an excellent source of proteins, vitamins, fats and minerals. The difference in 

biochemical composition of maize hybrids are observed significantly even cultivated on 

the same site (Shahini et al., 2023). This might be caused by the samples’ genetic 

makeup, management techniques and environmental factors (Harrelson et al., 2019; 

Idikut et al., 2009). 

Some breeders emphasized the role of additive gene effects for physiological traits 

while others focused on non-additive gene actions (Mir et al., 2015; Rastgari et al., 

2014). Genetic interactions with the environment influence the amount of carbohydrates 

in maize kernels (Mattoo et al., 2023). Grain sugar concentration is regulated by both 

additive and non-additive genetic activity (Adu et al., 2023). The conversion of proteins 

to starch is also influenced by high moisture concentrations (Benton et al., 2005). Some 

found the environment role on protein content, while others explained the significance 

of the action of additive and non-additive genes (García Bravo et al., 2023). Numerous 

researchers have reported positive association between oil and protein contents (Dubey 

et al., 2009; Kashyap et al., 2023; Li et al., 2024). 

Numerous biotic and abiotic factors influence plants (Liu et al., 2024). One of the 

main biotic constraints that has resulted in losses globally is stalk rot (Fusarium species) 

(Neish et al., 1983). The genes that are most desired and have the highest genetic 

variability determine the outcome of breeding programs. Programs including 

hybridization can obtain desired genes from these differences. Locus (qRfg1) was 

identified for stalk rot resistance in maize (Yang et al., 2010). Multidisciplinary 

cooperation among plant breeding, plant pathology, agronomy, environmental science, 

soil science, social sciences and economics is required to address the sustainable plant 

disease management. Plant diseases involve the complex interactions between biotic 

and abiotic factors comprising hosts, environments and pathogens. These interactions 

are favored by human interaction by using same cropping system, improper handlings 

of plant wastes and extensive use of pesticides. To increase the protein, oil, and starch 

content of maize, researchers have used several breeding techniques (Li et al., 2023; 

Murphy, 2023; Liang et al., 2023). 

The determination of resistant lines earlier using the power of image processing 

models can minimize the time of resistant lines detection. It is undeniable that genome-

based technologies, including as sequencing and genotyping, play a significant role in 

contemporary plant breeding. Resistance breeding programs have been improved 

because of advances in molecular approaches. Global research on the genetic makeup of 

maize lines is underway (Garg et al., 2023; Liu et al., 2023) which serves to mitigate the 

need for conventional inbreeding selection techniques. Additionally, it is thought that 

genotypes have an impact on the variance in maize strains’ resistance to diseases. 

The genetic makeup of various plant populations is ascertained by the application of 

SNP (single nucleotide polymorphism) molecular markers in unsupervised artificial 

neural network methods (Yoosefzadeh Najafabadi et al., 2023; Wang et al., 2025). 
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Accurately assessing Oleaeuropaea’s genetic diversity also heavily depends on 

computer tools (Slobodova et al., 2023). In addition to helping with the correct 

application of pesticides in the field, deep learning image processing approaches may 

detect weeds in vegetable fields with accuracy (Jin et al., 2021; Ma et al., 2024). Image-

based disease classification has been made possible by deep learning algorithms, 

particularly CNN (Attallah, 2023). 

In identification and classification tasks, a CNN with the fewest layers produces 

accurate results (Alhazmi, 2023; Ghosh et al., 2023). In order to apply pesticides 

correctly and accurately, a deep learning technique (a drone equipped with a Yolo-V3 

neural network model) is utilized to take images of the pest’s position (Al Hiary et al., 

2011). ConvNet has demonstrated outstanding performance in image classification, 

localization, and identification tasks that have been investigated (Simonyan et al., 

2015). 

The only way to increase the crop yield is to respond appropriately against the 

diseases considering the physiological and nutritional traits. Disease resistant strains are 

the major component of breeding programs used to enhance high-yielding cultivars. 

Knowledge about the mode of gene action in the improvement of physiological and 

nutritional traits and the use of machine learning algorithms in early detection of plant 

diseases would not only assist in developing disease-resistant breeding programs but 

also give farmers a practical remedy at their doorstep. 

In maize cultivation, stalk rot is a drastic and pervasive disease (Duan et al., 2022). It 

poses a serious danger to maize production due to recent changes in climate and 

agricultural practices (Duan et al., 2019). Fusarium and Pythium species are the primary 

motives behind maize stalk rot (Song et al., 2015). Multiple genes are thought to 

provide stalk rot resistance in maize, which has been classified as a quantitative trait 

(Ye et al., 2019). Selecting appropriate lines for hybridization programs under stressful 

conditions requires a thorough understanding of the additive or non-additive genetic 

impact (Mukaro et al., 2023). Implementing a breeding strategy to create extremely 

prolific hybrids in an unfavorable environment is more challenging than in a favorable 

one (Al-Falahy, 2015). Some researchers have highlighted the significance of non-

additive gene action (Kamal et al., 2023) while others have concentrated on the 

relevance of dominant gene action (Mukaro et al., 2023). Next-generation sequencing 

(NGS) technologies have completely changed crop improvement strategies (Jamil et al., 

2019; Ma et al., 2025). Numerous significant genes have been made easier to map and 

clone because to these methods (Lü et al., 2018). The convolutional neural network 

(image processing technique) has simplified the process of comparing and identifying 

disease-resistant cultivars. (Bao et al., 2021) investigated head blight disease with the 

spatial attention module. By minimizing the background influence, this strategy enabled 

them to extract the necessary characteristics. They were able to get 94.1% accuracy with 

the suggested classifier. Disease detection can benefit from knowledge of the lesion 

area’s color, texture, and structure. (Jin et al., 2021) identified weeds in the field by 

utilizing genetic algorithms. (Zou et al., 2021; Han et al., 2024) detected a number of 

disorders using the DesnseNet model. They said that the accuracy of their suggested 

model was 95%. Using CNN, (Hidayat et al., 2022) were able to assess the quality of 

rice seeds with 93% accuracy compared to other suggested model. In the light of these 

facts, the objective of the research is to (1) determine the genetic inheritance of disease 

resistance in addition to the physiological and nutritional traits of maize. (2) Correlate 
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lesion length (stalk rot) with other traits 3) determine the role of deep learning model in 

earlier identification of resistant lines against stalk rot. 

Materials and methods 

Both field and laboratory studies were involved in the current research. Field trial 

was performed for physiological traits while laboratory studies were carried out for 

nutritional traits at Maize and Millet Research Institute (MMRI), Yousafwala, 

Pakistan. Later on, genetic image-based resistance source identification was carried 

out using UV tray images at University of Minnesota, USA. Six generations (P1, P2, 

F1, F2, BC1, BC2) of two crosses were grown in Randomized Complete Block Design 

with three repeats. Two seeds were planted by hand in each hill and pruned to one 

plant at seedling stage. In each experimental plot, the spacing between plants and rows 

was kept at 20 and 75 cm respectively. To produce F1 generations, Y11 and EL7 (a 

female parent) crossed with DR59 and DR69 (male parent) respectively. To create the 

BC1 and BC2 generations, the F1 of both hybrids backcrossed to their respective parent 

(P1, P2) in the spring season. F2 generations produced by selfing a specific percentage 

of F1 seeds. Two distinct studies carried out in the autumn and spring to investigate 

the inheritance of attributes of six generations. One row for the parental and F1 

generations, ten rows for the hybrid generations and fifteen rows for the F2 

generations were maintained. 

Thirty (30) plants from parents and F1 generation, 150 plants from backcross 

generations and 300 plants from F2 generations were selected to record different 

physiological and nutritional traits. The different maize traits like days to 50% 

emergence, days to 50% tasseling, days to 50% silking, lesion length, protein, oil, starch 

and moisture content were studied. For model training, genetic images were cropped 

and processed before training and testing of the proposed model. TensorFlow, Google 

Colaboratory hardware and Python were utilized to detect genetic image based resistant 

sources using the Inception-V3 model. The stages involved in resistant source detection 

are described in Figure 1. The significance of differences between generational means 

was studied using the analysis of variance technique (Steel et al., 1996). The model was 

checked by accuracy percentage. 

Results 

Days to 50% emergence 

The combined analysis of variance showed highly significant results (P < 0.01) for 

the mean square values of days to 50% emergence (Table 1). Both hybrids showed 

non-significant results in autumn while results were significant (P < 0.01, P < 0.05) in 

spring (Tables 2 and 3). The Scaling test (Table 4) for both hybrids showed no value 

on any measure providing a simple dominance model for the trait. The genetic effect 

was governed by two variables m, [d] in spring (Tables 5 and 6). The generation 

variance analysis showed the effect of the additional gene (D) having a more 

pronounced effect than the effect of the dominant gene (H) in cross-1 (Table 7). Days 

to 50% emergence showed a greater value of H over D in cross-2. The degree of 

dominance was recorded ((H/D) 1/2) -1.41 and 3.64 in cross-1 and cross-2, 

respectively. 
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Table 1. Combined analysis of variance for different traits in two crosses 

Crosses S.O.V D.F 1 2 3 4 5 6 7 8 

Y11 × DR59 

T 5  1.17** 5.09** 3.64** 6.97** 1.54** 36.29** 1.54** 188.91** 

T × S 5 1.00** 25.23** 20.44** 1.44** 0.10NS 4.04** 0.26NS 0.49NS 

Error 20 0.23 0.57 0.72 0.35 0.04 0.77 0.33 0.29 

EL7 × DR69 

T 5  0.71* 32.27** 40.73** 6.09** 2.18** 24.62** 3.65** 186.33** 

T × S 5 1.38* 5.47** 5.80** 0.49NS 0.11NS 3.84** 3.92** 0.06NS 

Error 20 0.26 0.49 0.48 0.72 0.15 0.91 0.89 0.38 

S.O.V = source of variation, D.F = degree of freedom,1 = days to 50% emergence, 2 = days to 50% silking, 3 = days to 50% 

tasseling, 4 = protein contents, 5 = oil contents, 6 = starch contents, 7 = moisture contents, 8 = lesion length, T = treatments, T X 

S = treatment-season interaction, ** = highly significant at 1% level of significance, * = significant at 5% level of significance, 
NS = non-significant 

 

 
Table 2. Analysis of variance for different traits in autumn season for both crosses 

Crosses S.O.V D.F 1 2 3 4 5 6 7 8 

Y11 × DR59 
Generations 5  0.32NS 6.45**  8.72** 5.30**  0.43**  11.13**  0.84**  101.34** 

Error 10 0.18 0.38 0.28 0.44 0.02 0.60 0.12 0.23 

EL7 × DR69 
Generations 5 4.0NS 6.85** 9.65 ** 3.72** 1.00** 15.51** 4.78** 92.24 ** 

Error 10 3.0  0.85 0.78 0.41 0.09 0.61 0.83 0.32 

S.O.V = source of variation, D.F = degree of freedom, 1 = days to 50% emergence, 2 = days to 50% silking, 3 = days to 50% 

tasseling, 4 = protein contents, 5 = oil contents, 6 = starch contents, 7 = moisture contents, 8 = lesion length, ** = highly 
significant at 1% level of significance, * = significant at 5% level of significance, NS = non-significant 
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Table 3. Analysis of variance for different traits in spring season for both crosses 

Crosses S.O.V D.F 1 2 3 4 5 6 7 8 

Y11 × DR59 
Generations 5  1.02* 23.86**  18.08** 3.11** 1.21**  29.21** 0.95NS 88.05** 

Error 10 0.25 0.83 1.18 0.28 0.06 0.94 0.58 0.41 

EL7 × DR69 
Generations 5 1.70** 30.76** 34.08** 2.85* 1.30* 12.95** 2.80NS 94.15** 

Error 10 0.16 0.26 0.55 1.17 0.24 1.34 0.86 0.52 

S.O.V = source of variation, D.F = degree of freedom,1 = days to 50% emergence, 2 = days to 50% silking, 3 = days to 50% 
tasseling, 4 = protein contents, 5 = oil contents, 6 = starch contents, 7 = moisture contents, 8 = lesion length, ** = highly 

significant at 1% level of significance, * = significant at 5% level of significance, NS = non-significant 

 

 
Table 4. Scaling test for important maize plant traits in two seasons for two crosses 

Traits Season 
Cross 1 Cross 2 

A B C A B C 

1 SP       

2 
AU -2.00 ± 0.94 -4.66 ± 1.45 -4.00 ± 1.91    

SP   6.66 ± 2.78  -2.00 ± 0.74  

3 
AU  2.33 ± 0.55 8.33 ± 1.52 2.33 ± 1.00  8.00 ± 2.90 

SP  -5.33 ± 1.94   -7.00 ± 1.37  

4 
AU       

SP       

5 
AU       

SP     -1.80 ± 0.58  

6 
AU    -8.66 ± 1.63 -7.66 ± 0.78 -7.00 ± 2.08 

SP    -5.00 ± 1.22   

7 AU  -1.00 ± 0.47  -1.33 ± 0.66 1.00 ± 0.47  

8 
AU 1.04 ± 0.35   8.37 ± 1.34     4.32 ± 0.81 

SP   -2.48 ± 0.96 5.41 ± 1.10     2.91 ± 1.11 

1 = days to 50% emergence, 2 = days to 50% silking, 3 = days to 50% tasseling, 4 = protein contents, 5 = oil contents, 6 = starch 

contents, 7 = moisture contents, 8 = lesion length, AU = Autumn, SP = Spring, Scales having the values are significant at 5% 

significant level 

 

 
Table 5. Estimates of genetic effects for generation means for important maize plant traits 

for Cross-1 (Y11 * DR59) 

Traits Season M [d] [h] [i] [j] [l] 

1 SP 13.00 ± 1.50 0.66 ± 2.35      

2 
AU 62.33 ± 1.90 2.00 ± 0.23 -12.00 ± 5.00 -6.00 ± 1.88   

SP 89.33 ± 1.92 -4.00 ± 0.37 -12.66 ± 4.96   9.33 ± 3.28 

3 
AU 56.33 ± 0.33 -1.00 ± 0.47 -7.83 ± 1.67 -6.00 ± 1.63 -1.16 ± 0.50  

SP 87.83 ± 2.34 -3.5 ± 0.40 -14.16 ± 6.39   10.33 ± 4.24 

4 
AU 9.00 ± 3.33 1.16 ± 0.23     

SP 9.83 ± 3.89 0.50 ± 0.28     

5 
AU 3.50 ± 0.28 -0.40 ± 0.03     

SP 3.85 ± 0.42 0.31 ± 0.10     

6 
AU 41.08 ± 3.94 1.48 ± 0.17     

SP 40.16 ± 0.44 2.66 ± 0.48     

7 AU 15.00 ± 0.28 1.26 ± 0.22     

8 
AU 8.50 ± 0.29 -6.46 ± 0.13 -15.60 ± 1.24 -7.8 ± 1.19 0.76 ± 0.33 7.23 ± 1.85 

SP 7.06 ± 0.18 -5.33 ± 0.13 -14.46 ± 1.26 -7.30 ± -1.05  9.18 ± 1.44 

1 = days to 50% emergence, 2 = days to 50% silking, 3 = days to 50% tasseling, 4 = protein contents, 5 = oil contents, 6 = starch 

contents, 7 = moisture contents, 8 = lesion length, AU = Autumn, SP = Spring 
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Table 6. Estimates of genetic effects for generation means for important maize plant traits 

for Cross-2 (EL7 * DR69) 

Traits Season M [d] [h] [i] [j] [l] 

1 SP 13.50 ± 1.63 1.00 ± 0.47     

2 
AU 59.50 ± 2.53 -1.83 ± 0.47     

SP 85.66 ± 0.33 -3.00 ± 0.47   1.50 ± 0.47 6.33 ± 2.40 

3 
AU 57.00 ± 2.86 -2.33 ± 0.22  -4.00 ± 2.82   

SP 84.33 ± 0.33 -1.33 ± 0.66  -4.00 ± 1.88 3.33 ± 0.70 11.33 ± 3.29 

4 
AU 9.00 ± 0.50 1.05 ± 0.26     

SP 7.16 ± 3.12 1.23 ± 0.56     

5 
AU 3.12 ± 0.19 -0.39 ± 0.03     

SP 3.23 ± 0.14 -0.48 ± 0.14   1.05 ± 0.50  

6 
AU 37.16 ± 0.44  -5.83 ± 2.42 -9.33 ± 2.35  25.66 ± 3.75 

SP 39.50 ± 0.86 2.66 ± 0.51   0.86 ± 0.80  

7 AU 14.66 ± 0.33 1.56 ± 0.31     

8 
AU  7.67 ± 0.12 -6.73 ± 0.59 -11.60 ± 1.32 -4.41 ± 1.28   

SP 6.86 ± 0.19 -6.99 ± 0.70 -10.87 ± 1.65 -3.39 ± 1.61   

1 = days to 50% emergence, 2 = days to 50% silking, 3 = days to 50% tasseling, 4 = protein contents, 5 = oil contents, 6 = starch 
contents, 7 = moisture contents, 8 = lesion length, AU = Autumn, SP = Spring 

 

 
Table 7. Estimates of genetic effects for generation variance for important maize plant traits 

Traits Season 
Cross 1 Cross 2 

D E H (H/D)1/2 D E H (H/D)1/2 

1 SP 0.66 0.33 -1.33 -1.41 0.10 0.00 1.33 3.64 

2 
AU -1.33 1.66 -2.66 1.41 2.66 1.00 -5.33 -1.41 

SP -1.33 0.88 0.44 -0.57 0.53 0.11 0.88 1.28 

3 
AU 8.66 0.22 -8.88 -1.02 4.00 1.00 -6.66 -1.29 

SP -4.00 1.00 5.33 -1.15 -1.33 0.66 1.33 -1.00 

4 
AU 4.33 0.13 -2.22 -0.71 -0.33 0.25 2.66 -2.82 

SP -1.66 0.41 8.66 -2.28 -7.50 0.47 15.44 -1.43 

5 
AU -0.006 0.11 0.53 -8.98 -0.29 0.01 0.96 -1.81 

SP 0.02 0.15 -0.56 -4.61 -1.17 0.16 1.92 -1.28 

6 
AU 6.89 0.15 -4.30 -0.79 -1.33 0.63 2.44 -1.35 

SP -1839.14 1.63 3674.07 -1.41 6.66 1.25 -9.33 -1.18 

7 AU 0.66 0.11 -0.44 -0.81 0.33 0.13 -0.22 -0.81 

8 
AU  0.92 0.39 -2.41 -1.61 -1.92 0.35 2.63 -1.16 

SP -0.41 0.62 -1.25 1.73 -0.70 0.11 1.03 -1.21 

1 = days to 50% emergence, 2 = days to 50% silking, 3 = days to 50% tasseling, 4 = protein contents, 5 = oil contents, 6 = starch 

contents, 7 = moisture contents, 8 = lesion length, AU = Autumn, SP = Spring 

 

 

Days to 50% silking 

The treatment as well as treatment × season were significant (P < 0.01) for days to 

50% silk in both hybrids in Table 1. Significant results for the trait in each season were 

also studied in both hybrids (Tables 2 and 3). During the autumn, cross-1 (Y11 x DR59) 

showed four model parameters m, [d], [h] and [i] while in the spring, m, [d], [h] and [l] 

provided a good fit for days to 50% silk (Table 5). The trait in cross-2 (El7 x DR69) 

showed a slight additive dominance pattern during the autumn. However, additive 

genetic action with greater contribution from the inferior parent was noted. Four 

parameter model m, [d], [j] and [l] elaborated the gene effect for the trait during spring 
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(Table 6). Cross-1 and cross-2 showed greater value of D over H in autumn while D is 

less than H in spring season as mentioned in Table 7. The correlation between lesion 

length and days to 50% silk was non-significant (Table 8). 

 
Table 8. Correlation between lesion length and investigated traits for both crosses under two 

seasons 

Trait 

Lesion length 

Cross-1 Cross-2 

Autumn Spring Autumn Spring 

1 - -0.42NS - -0.12NS 

2 -0.25NS 0.27NS 0.23NS 0.21NS 

3 -0.46NS 0.22NS 0.18NS 0.15NS 

4 -0.64** -0.44NS -0.61* -0.27NS 

5 -0.83** -0.74** 0.01NS -0.13NS 

6 -0.81** -0.87** -0.43NS -0.76** 

7 -0.43NS - 0.23NS - 

1 = days to 50% emergence, 2 = days to 50% silking, 3 = days to 50% tasseling, 4 = protein contents, 5 = oil contents, 6 = starch 

contents, 7 = moisture contents. ** = highly significant at 1% level of significance. * = significant at 5% level of significance. 
NS = Non-significant 

 

 

Days to 50% tasseling 

Days to 50% tassels in Table 1 provided significant results (P < 0.01) for treatment 

as well as treatment x season. The results were also significant for the trait in both 

hybrids when analyzed separately in autumn and spring (Tables 2 and 3). The trait in 

cross-1 showed a five-parameter model m, [d], [h], [i], and [j] and four-parameter model 

m, [d], [h]. [l] in autumn and spring respectively (Table 5). Cross-2 exhibited genetic 

influence of m, [d], [i], and m, [d], [i], [j] and [l] in autumn and spring respectively 

(Table 6). Both crosses showed greater value of D over H in autumn while H was 

greater than D in spring season (Table 7). The degree of dominance was less than unity 

in both crosses. A non-significant relationship was observed between lesion length and 

days to 50% tassel (Table 8). 

 

Protein contents 

In the case of protein contents, the treatment and treatment × season analysis were 

significant in cross-1. Cross-2 revealed significant results for treatment only (Table 1). 

Seasonal analysis during the autumn and spring seasons showed significant results for 

the treatment in cross-1 and cross-2 (Tables 2 and 3). The protein contents in both 

hybrids showed an additive gene action without dominance (Tables 5 and 6). H was 

greater than D in both hybrids except cross-1 during autumn (Table 7). Correlation 

study between lesion length and protein contents exhibited negative relation (r = -0.64, 

r = -0.61) in both crosses during autumn (Table 8). 

 

Oil contents 

In the case of oil contents, significant mean square values were observed for 

treatment only in both crosses (Table 1). Significant variation studied in each season for 

both hybrids (Tables 2 and 3). Oil contents are controlled by m and [d] in both hybrids 

except cross-2 where [j] is also involved in the spring (Tables 5 and 6). The value of H 

was greater than D in autumn and less in spring in cross-1. Cross-2 showed greater 
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value of H compared to D during autumn and spring seasons. The degree of dominance 

was less than unity in both hybrids (Table 7). Correlation study between lesion length 

and oil contents exhibited negative value of -0.83 and -0.74 in cross-1 during autumn 

and spring respectively (Table 8). 

 

Starch contents 

Starch contents showed variation due to treatment as well as environment (Table 1). 

Both hybrids showed significant differences for treatment in each season (Tables 2 and 

3). The trait in cross-1 is governed by m and [d] in autumn and spring (Table 5). Cross-

2 exhibited m, [h], [i] and [l] genetic influence in the autumn. In spring, the three-

parameter model m, [d], and [j] explained the effect of the gene better (Table 6). The 

degree of dominance was less than unity in both hybrids (Table 7). Correlation study 

between lesion length and starch contents exhibited negative value of -0.81 and -0.87 in 

cross-1 during autumn and spring respectively. Likewise, the value of -0.76 was noted 

in cross-2 (Table 8). 

 

Moisture contents 

In the case of moisture contents, treatment mean square was significant in both 

crosses. Only for cross-2, the treatment and environment interaction was significant 

(Table 1). In autumn, both crosses demonstrated notable intergenerational differences 

(Table 2). Genetic effects m and [d] regulate the moisture contents of both crosses 

(Tables 5 and 6). In both crosses, the degree of dominance is below unity (Table 7). 

 

Lesion length 

In the case of lesion length, Table 1 showed significant differences for treatment 

only. In a similar vein, Tables 2 and 3 demonstrated notable generational variations in 

both crosses. The six-parameter model m, [d], [h], [i], [j], and [l] was seen during the 

autumn for lesion length in cross-1, whereas the five-parameter model Parameters was 

observed during the spring. A good fit to the observed values was given by the model 

parameters m, [d], [h], [i], and [l] (Table 5). In both autumn and spring, the trait in 

cross-2 displayed the four-parameter pattern m, [d], [h], and [i] (Table 6). In cross-1, H 

has a lower value than D, while in cross-2, it has a larger value (Table 7). 

 

Model predictions 

The majority of farmers visually monitor the crop to recognize pathogen infection 

status. The use of pre-trained model was explored to distinguish between susceptible 

and resistant lines based on genetic images. Preprocessed images after proper cropping 

were fed to the model to minimize the computational time. The model results elaborated 

in Figure 2 show the training and validation accuracy of the model. The training 

accuracy was up to the mark while validation accuracy showed 95%. The model 

predictions on unseen images are shown in Figure 3. 

Discussion 

Breeding programs are advantageous for researchers only, if there exist genetic 

differences among the planting materials (Reddy et al., 2018). The differences are an 
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essential source for introducing desired changes in plants (Abdul Aziz et al., 2024). 

Generation mean analysis was carried out to obtain information about the genetic 

composition of the trait. The days to 50% emergence in the spring, days to 50% silk in 

the autumn, protein content in both seasons, oil content in both seasons while autumn in 

cross-2, and starch contents for cross-1 in both seasons exhibited non-significant scaling 

tests, indicating the dominant additive model satisfies these features. All other traits had 

significant values in at least one of the scaling tests and showed a cognitive interaction 

elaborating the presence of epistasis (Table 4). The results of the analysis of the mean 

generation of days to 50% emergence in the spring showed the importance of the 

additive dominance model. Generation variance analysis demonstrated both additive 

type and over dominance of genetic action for the trait in cross-1 and cross-2 

respectively. Similar kind of findings are observed by Amegbor et al. (2023). Cross-1 

showed a non-allelic interaction with a greater contribution of the additive gene effect in 

the autumn for 50% day to silking. A negative value of [h] showed a lesser contribution 

by the dominant parent. Dominance reduces silk days. The sign of [h] and [l] are 

opposite in Table 5 demonstrated the manifestation of epistasis which might show a 

disadvantage in early selection. In cross-2, additive and non-additive genetic action 

played a role in inheriting the trait during the autumn and spring seasons, respectively. 

The results of generation variance analysis exhibited the contribution of both additive 

and over dominance gene action. The results of the study are supported by Onejeme et 

al. (2020) and Lal et al. (2023). Non-additive gene action in both seasons for 50% days 

to tasseling was observed in cross-1. A negative value of [h] showed a lesser 

contribution by the dominant parent. Therefore, selection must be made carefully in 

future generations. In spring, the sign of [h] and [l] are opposite and elaborate duplicate 

epistasis, which might cause problems in early selection. Additive gene action during 

autumn was involved in cross-2. The negative value of [d] and [i] in cross-2 during 

spring demonstrated the presence of alleles with a decreasing effect indicating careful 

selection in advanced generations. Analysis of generation variance favored the 

contribution of genetic action as well as the influence of dominant genes in both 

crosses. Similar kind of results were also achieved by Yadav et al. (2023). The 

importance of the Season × Treatment analysis in cross-1 demonstrated the involvement 

of the environment in controlling protein contents. The trait in both hybrids exhibited 

the additive gene action with no dominance. Therefore, simple selection followed by 

relative breeding is appropriate to improve the trait. The negative association of the trait 

with lesion length justifies the negative effect of the disease on the trait. Similar kind of 

results has been elaborated by Lobulu et al. (2023). The study indicated the non-

involvement of environment in controlling the oil contents. With the exception of cross-

2, which also exhibited epistasis relations during the spring, the oil contents in both 

hybrids demonstrated an additive dominance model with a distinct influence of additive 

genetic role in both seasons. A negative [d] value indicated that the inferior parent 

contributed more. In order to improve the characteristic, careful selection followed by 

pedigree breeding is appropriate. The characteristic’s negative connection with the 

lesion length indicated that the disease had a negative impact on the trait. The current 

findings are in accordance with the findings of Luo et al. (2023). Starch content further 

demonstrated how the environment affected the characteristic. A simple additive model 

was seen in the characteristic in cross-1, with the additive impact contributing in both 

growth seasons. Autumn starch content revealed a complicated non-additive gene action 

in cross-2. Duplicate epistasis was present due to opposite sign of [h] and [l], suggesting 
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that selection need to be postponed until later generations. Additive gene action was 

observed during spring. The disease’s detrimental impact on the characteristic was 

explained by the trait’s negative connection with lesion length. The study endorsed the 

findings of Wu et al. (2023). A straightforward additive dominance model was shown 

by the mean generation analysis for both hybrids in the autumn for moisture contents. 

Partial dominance gene action was observed due to lesser value of degree of dominance 

from unity. Ohunakin et al. (2023) reported similar results. 

 

 

Figure 2. Model training and validation accuracy 

 

 

Over the course of two seasons, crosses between lines with consistently resistant 

and susceptible responses were developed. The non-significant treatment x season 

means square results were due to this activity. The lesion length is the result of a 

complicated non-additive gene action throughout the autumn in cross-1. The negative 

values of [h] and [I] represented the more contribution of lower parent. As a result, 

careful selection is required in succeeding generations. Duplicate epistasis was present 

which was indicated by opposite signs of [h] and [l]. It will be problematic for early 

selection. A non-additive genet action in lesion length exhibited in the spring. 

Duplicate epistasis observed indicating that selection ought to be postponed until later 

generations. In both seasons, Cross-2 shown non-allelic interaction with more additive 

genetic impact, the negative values of [h] and [i] showed lesser contribution from the 

greater parent. As a result, careful selection is required in succeeding generations. The 

same significant findings were observed by Hou et al. (2023) and Ali Khan et al. 

(2023). The current study was also able to reach up to 95% accuracy using image-

processing model (Guerrero-Ibañez et al., 2023; Zhou et al., 2024) applied a CNN 

model for the diagnosis and categorization of tomato diseases. They got 99% 

classification accuracy. Our results endorsed the findings of Mohanty et al. (2016), 

who detected 26 distinct plant diseases with 99.35% accuracy. The requirement for 

cameras has been replaced by the emergence of android phones. To detect infections 

early, farmers can snap images of the affected region and upload them to the main 

server (Ranjith et al., 2017). 
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Figure 3. Model predictions on unseen images 

Research limitations 

The limitations of the research are as under: 

1. The disease (stalk rot) requires favorable environment to show its pandemic 

impact. We were unable to maintain it in natural environment. 

2. The research focused on grayscale images, which may limit the model 

performance on RGB images. 

3. The more training can enhance model performance. However, it requires more 

image data, high power GPU machine and additional memory. 

Conclusions 

Some differences in gene action in the results of generation mean and variance 

analysis elaborated in this research might be due to difference in the statistical methods 

used. The current study helps in identifying disease resistant lines using the power of 



Qureshi et al.: Gene action of maize traits and resistant source detection against stalk rot using deep learning technique 

- 3371 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(2):3359-3375. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2302_33593375 

© 2025, ALÖKI Kft., Budapest, Hungary 

artificial intelligence. Inheritance pattern also helps in the improvement of physiological 

and nutritional traits. By examining disease resistance alone, it became clear that lesion 

length was not significantly correlated with physiological and nutritional traits. These 

resistant lines may provide a gene or genes for high-yielding cultivars. Using the 

suggested model on a smartphone can assist pathologists and breeders in creating high-

yielding varieties in addition to helping farming communities in solving their problems 

at their doorstep. 
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