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Abstract. In the context of the need for efficient agricultural monitoring under climate change, this study aimed to 

achieve rapid and non-destructive monitoring of foxtail millet aboveground biomass (AGB), AGB data and canopy 

spectral data were measured under varying sowing dates. Preprocessed using Standard Normal Variate (SNV), 

Multiple Scattering Correction (MSC), and First Derivative (1ST) methods. Based on this, foxtail millet AGB 

monitoring models were constructed using the full spectrum, characteristic wavelengths, and optimized spectral 

indices, and their accuracy was evaluated. The results showed that all three preprocessing methods improved the 

correlation between spectral reflectance and foxtail millet AGB. The best spectral index was 1ST-TB1 (451, 626, 

697), which exhibited a correlation coefficient of 0.863 with foxtail millet AGB. Among the constructed models, 

the 1ST-PLS model based on the full spectrum exhibited higher accuracy (R2=0.834; RMSE=1.443 t/hm2; 

RPD=2.507). This study confirms the feasibility of spectral monitoring for foxtail millet AGB and provides a 

reference for rapid, non-destructive monitoring of foxtail millet AGB, and provide a robust framework for precision 

agriculture, enabling efficient foxtail millet management and yield optimization. 

Keywords: foxtail millet, remote sensing, precision agriculture, non-destructive monitoring, vegetation indices 

Introduction 

Foxtail millet is one of the most important traditional food crops in China, boasting a long 

history of cultivation (Lv et al., 2020; Li et al., 2022b). Due to its drought tolerance, poor soil 

adaptability, high water use efficiency, improve soil structure and reduce soil erosion, and 

balanced nutrition, it remains a crucial crop in the arid and semi-arid regions of the Asia, Africa, 

and Eastern Europe (Lata et al., 2013; Yang et al., 2019b; Diao, 2019). Considering food 

security, enhancing the yield of foxtail millet is vital for ensuring regional food supply and 

improving farmers' incomes (Li et al., 2021c). The sowing date significantly influences the 

yield and quality of foxtail millet; an optimal sowing schedule aligns the growth and 

developmental stages of foxtail millet with favorable climatic conditions, thereby improving 

the utilization of water and solar heat and enhancing both yield and quality (Li et al., 2021b, 

2022a). Aboveground biomass (AGB) is a critical parameter reflecting crop growth status and 

guiding field management, closely associated with crop yield. Research on AGB can provide a 

theoretical basis for high-yield cultivation of foxtail millet (Wang et al., 2023a; Zhu et al., 2023a; 
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Dong et al., 2024a). Although traditional destructive sampling methods for determining millet 

AGB are accurate, they are time-consuming and have a delayed response (Marshall et al., 2015; 

Yue et al., 2019). 

Since the 1970s, remote sensing techniques have been extensively used to estimate various 

crop physiological parameters (Kuplich et al., 2005; Yang et al., 2019a; Jiang et al., 2022). With 

the advancement of high-resolution sensors and computing technology, remote sensing for 

monitoring crop conditions has gained increasing attention (Kang et al., 2020; Zhao et al., 2024). 

Specifically, hyperspectral remote sensing technology allows for the quantitative analysis of 

subtle changes in crop development through minor differences in spectral reflectance, offering 

a rapid, non-destructive method to assess foxtail millet AGB (Yan et al., 2022). Currently, 

spectral monitoring of crop growth parameters can be categorized into three types based on the 

number of wavelengths used in model construction. The first type uses the full spectrum, 

treating all wavelengths as variables to construct the monitoring model. For instance, Dong et 

al. (2019) developed a hyperspectral monitoring model for the chlorophyll content of maize 

leaves, which showed that models based on the full spectrum performed best (R2=0.910, 

RMSE=2.071). The second type involves constructing models using characteristic wavelengths, 

such as the work by Xie et al. (2023) who used correlation analysis and stepwise multiple linear 

regression (CA+SMLR), partial least squares regression (PLS+SMLR), and the successive 

projection algorithm (SPA) to identify characteristic wavelengths for proline content in winter 

wheat. Their PLSR model demonstrated superior performance. The third type employs spectral 

indices to construct models. Commonly used dual-band spectral indices include the Ratio 

Spectral Index (RSI), Normalized Difference Spectral Index (NDSI), and Difference Spectral 

Index (DSI) (Zhu et al., 2023b; Zhang et al., 2023). For example, Gong et al. (2023) constructed 

estimation models for soybean AGB using seven different vegetation indices, finding that the 

model based on the Infrared Vegetation Index (IPVI) outperformed those based on other indices. 

Wang et al. (2023b) monitored the Leaf Area Index (LAI) and AGB of rice using multispectral 

images, showing strong correlations between vegetation indices and LAI and AGB, with the 

best indices being the Chlorophyll Red Edge Index (CIRE) and the Normalized Difference Red 

Edge Index (NDRE), achieving R2 values of 0.80 and 0.76, respectively. However, when 

vegetation cover is high, dual-band spectral indices can saturate, failing to accurately reflect the 

actual condition of the vegetation. Compared to dual-band indices, three-band spectral indices 

can mitigate this saturation issue to some extent, providing a more comprehensive reflection of 

vegetation growth conditions. 

Current hyperspectral studies on crop biomass predominantly focus on staple cereals (e.g., 

wheat, maize), while neglecting drought-adapted minor crops like foxtail millet. Existing 

models often rely on dual-band indices prone to saturation and lack systematic evaluation of 

preprocessing methods (SNV, MSC, 1ST) for spectral noise reduction. We systematically 

conduct a comprehensive comparison of various preprocessing techniques and different model 

types specifically tailored for the monitoring of AGB. This systematic approach not only 

addresses the long - standing neglect of foxtail millet in related research but also contributes to 

resolving the ambiguity in methodological choices, thereby potentially advancing the field of 

crop biomass monitoring with respect to this under - studied yet important cereal crop. In 

constructing models for monitoring crop conditions, the number of bands used for modeling is 

a crucial factor affecting model accuracy. There is still no consensus on how to select 

appropriate wavelength variables for model construction. Moreover, the collection of spectral 

data is often influenced by factors such as temperature, atmospheric water vapor content, and 

soil background, making the elimination or reduction of spectral noise essential for building 

robust models (Yan et al., 2023). Numerous studies have shown that preprocessing raw spectral 
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data can effectively remove the effects of spectral noise and enhance the accuracy of monitoring 

models (Yang et al., 2020; Feng et al., 2022; Zheng et al., 2023), SNV minimizes scattering 

effects by normalizing each spectrum to zero mean and unit variance. MSC corrects additive 

and multiplicative scattering via linear regression against a reference spectrum. 1ST (first 

derivative) enhances spectral features by reducing baseline shifts and isolating absorption peaks. 

These methods were selected to address noise from soil background and atmospheric 

interference. Thus, based on these issues, this study applied several classical methods to 

preprocess the original spectral reflectance of foxtail millet, comparing the capabilities of full 

spectrum, characteristic wavelength, and optimized spectral index methods for monitoring 

foxtail millet AGB. This study addresses the critical gap in hyperspectral monitoring of foxtail 

millet AGB. We aim to (1) evaluate preprocessing methods (SNV, MSC, 1ST) for enhancing 

spectral correlations, (2) identify optimal spectral indices and wavelengths, and (3) develop 

accurate AGB estimation models to support non-destructive crop management. 

Materials and methods 

Experimental design 

The experiment was conducted in 2023 at the Dingxiang base in Xinzhou, Shanxi Province, 

China. The field trials used the variety Jingu 21, with six sowing dates (B1: May 5, B2: May 

12, B3: May 19, B4: May 26, B5: June 2, and B6: June 9). The planting density was 300,000 

plants per hectare, with a row spacing of 30 cm, and the plot size was 5 × 6 m². Each trial 

included three replications, totaling 18 plots. Before planting, 22,500 kg/hm2 of organic 

fertilizer and 375 kg/hm2 of compound fertilizer (N:P:K = 24:10:6) were applied. 

Data collection 

Hyperspectral data acquisition 

Hyperspectral data were collected using the FieldSpec4 portable spectroradiometer 

produced by Analytical Spectral Devices (ASD), USA. The spectral range spanned from 350 

to 2500 nm, with a field of view of 25°. The spectral sampling intervals were 1.4 nm from 350 

to 1000 nm with a spectral resolution of 3 nm, and 2 nm from 1000 to 2500 nm with a spectral 

resolution of 10 nm. Spectral measurements of the foxtail millet canopy were conducted from 

10:00 to 14:00 under clear, calm or light wind conditions. Measurements began on July 11 (the 

elongation stage of the sixth sowing period) and were taken every 10 days, totaling four sessions. 

During measurements, the sensor probe was oriented vertically downwards at a distance of 

approximately 1.0 m above the canopy. Three points were measured per plot, with each point 

measured five times to calculate the average spectral reflectance. Standard whiteboard 

calibration was performed before and after each group of observations. 

Biomass measurement 

Following the collection of hyperspectral data, three representative foxtail millet plants were 

harvested from each experimental plot, quickly brought back to the laboratory, and their fresh 

weight was measured. The samples were then blanched at 105°C for 30 minutes and 

subsequently dried at 80°C until a constant weight (W/g) was achieved. The formula for 

calculation is as follows: 

 

 AGB =
W∗N

3∗S∗100
(t/hm2) (Eq.1) 
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In the formula, W represents the dry weight of three foxtail millet plants, N is the 

number of foxtail millet plants per plot, and S refers to the area of each experimental plot. 

Construction of spectral indices 

Spectral indices are calculated from remote sensing data by combining and comparing 

spectral characteristics across different wavelength ranges. These indices can characterize 

surface cover types, crop growth, and soil properties and are widely used in research and 

monitoring in agriculture, ecology, and water resource fields. To identify the optimal 

spectral indices for monitoring foxtail millet AGB, nine spectral indices were evaluated 

and optimized. Table 1 lists the spectral indices used in this study along with their 

calculation formulas. 

 
Table 1. Spectral indices used in this study 

Spectral Indices Formula Spectral Indices Formula 

RSI λ1/λ2 TB3 λ1/(λ2*λ3) 

NDSI (λ1-λ2)/(λ1+λ2) TB4 λ1/(λ2+λ3) 

DSI λ1-λ2 TB5 (λ1-λ2)/ (λ1+λ2-2λ3) 

TB1 (λ1-λ2)/(λ2+λ3) TB6 (λ1-λ2+2λ3)/(λ1+λ2-2λ3) 

TB2 (λ1-1.8λ2)/( λ3-1.8λ2)   

Note: λ1, λ2, and λ3 represent random wavelengths of the spectrum. (This table shows the spectral indices 

used in this study and their calculation formulas. Spectral indices are calculated by combining and 

comparing spectral characteristics across different wavelength ranges, which are used to characterize 

surface cover types, crop growth conditions, soil properties) 

 

 

Data analysis methods 

Spectral data outliers were removed using ViewSpecPro software. The Unscrambler 

X 10.4 was utilized for preprocessing the spectral data, which included Standard Normal 

Variate Transformation (SNV), Multiple Scatter Correction (MSC), and First Derivative 

(1ST). Correlation analysis and model construction were performed using Matlab2019, 

while plotting was done with Origin2021. This study evaluated model accuracy using the 

coefficient of determination (R²), Root Mean Square Error (RMSE), and the Ratio of 

Performance to Deviation (RPD). A higher R², closer to 1, and a smaller RMSE indicate 

better model fit and predictive ability. A higher RPD value signifies better predictive 

capability of the model. Generally, an RPD value less than 1.4 indicates poor predictive 

ability; an RPD between 1.4 and 2.0 suggests good predictive capability, and an RPD of 

2.0 or higher indicates excellent predictive capability (Guo et al., 2014). The calculation 

formula is as follows: 

 

 𝑅2 =
∑ (𝑌𝑖

′−𝑌
−

𝑖)2𝑛
𝑖=1

∑ (𝑌𝑖−𝑌𝑖

−
)2𝑛

𝑖=1

 (Eq.2) 

 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑖 − 𝑌𝑖

′)2𝑛
𝑖=1  (Eq.3) 

 

 𝑅𝑃𝐷 =
𝑆𝐷

𝑅𝑀𝑆𝐸
 (Eq.4) 
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In the formula, n represents the number of samples, 𝑌𝑖
′ and 𝑌𝑖 are the predicted and 

actual values of the samples respectively, 𝑌
_

𝑖 is the mean of the actual sample values, and 

SD is the standard deviation of the samples. 

Results 

Descriptive statistical analysis of foxtail millet biomass data 

As shown in Table 2, the dataset was divided into calibration (75%) and validation 

(25%) sets using a concentration gradient method to ensure representative distribution of 

AGB values across both subsets. From Table 2, it is observed that the range of foxtail 

millet AGB values spanned from 0.211 to 15.248 t/hm2. Moreover, the mean values and 

standard deviations of the calibration set, validation set, and total samples were closely 

aligned. The mean values were 5.791 t/hm2, 5.665 t/hm2, and 5.760 t/hm2 for the 

calibration, validation, and total samples, respectively. The standard deviations were 

3.647 t/hm2, 3.618 t/hm2, and 3.614 t/hm2 for the calibration, validation, and total samples, 

respectively. 

 
Table 2. Descriptive statistics of foxtail millet AGB 

Data set Samples Range Min Max Mean SD 

Calibration set 54 15.037 0.211 15.248 5.791 3.647 

Validation set 18 13.362 0.428 13.790 5.665 3.618 

Total 72 15.037 0.211 15.248 5.760 3.614 

Note: The range, minimum value, maximum value, mean, and standard deviation are t/hm2. (The table 

presents the descriptive statistical results of foxtail millet AGB data. The study used the concentration 

gradient method to divide the data into a calibration set and a validation set at a ratio of 3:1. The table 

shows the number of samples, the range, minimum value, maximum value, mean value, and standard 

deviation of different data sets (calibration set, validation set, and total samples). These statistical 

information helps to understand the distribution characteristics of foxtail millet AGB data and provides 

basic data reference for subsequent model construction and evaluation.) 

 

 

Hyperspectral response of foxtail millet biomass 

To elucidate the hyperspectral response characteristics of foxtail millet biomass, this 

study analyzed the trends in hyperspectral changes across different gradient ranges. As 

shown in Figure 1, with the increase in foxtail millet AGB, a gradual decrease in spectral 

reflectance was observed within the visible and near-infrared wavelength ranges. 

However, within the visible light spectrum, the spectral differences between the gradient 

ranges of 8.000 to 12.000 t/hm2 and 12.000 to 16.000 t/hm2 were minimal, with noticeable 

changes in spectral reflectance only near the 550 nm peak. 

Correlation analysis between foxtail millet biomass and canopy spectral reflectance 

under different preprocessing conditions 

To fully extract spectral information from foxtail millet, this study applied three 

preprocessing methods to the raw spectral reflectance. Based on the reflectance after 

different preprocessings, the study analyzed the correlation between spectral reflectance 

and foxtail millet AGB using correlation analysis methods. As shown in Figure 2, the 

original spectral reflectance exhibited a negative correlation with foxtail millet biomass 
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across the entire spectral range, with the maximum absolute correlation coefficient 

(MACC) being 0.612. After preprocessing with SNV, MSC, and 1ST, the correlation 

between spectral reflectance and foxtail millet biomass showed fluctuating positive and 

negative correlations across the full spectrum. The correlation trends for MSC and SNV 

were similar, while 1ST showed greater fluctuations. From the right graph, it is evident 

that all three preprocessing methods enhanced the correlation between foxtail millet AGB 

and spectral reflectance. Notably, the correlation after MSC preprocessing was 

significantly improved, with the MACC value reaching 0.784. 

 

Figure 1. Hyperspectral characteristics of AGB of foxtail millet in different gradient ranges. 

(The figure shows the hyperspectral characteristics of foxtail millet under different AGB 

gradient ranges. The abscissa represents the wavelength (nm), and the ordinate represents the 

spectral reflectance. The curves of different colors represent the AGB gradient ranges of 0～4 

t/hm², 4～8 t/hm², 8～12 t/hm², and 12～16 t/hm²) 

 

 

Extraction of characteristic wavelengths for foxtail millet biomass 

To explore the characteristic wavelengths of foxtail millet biomass and reduce the 

redundancy in the original spectral data, this study utilized the Successive Projection 

Algorithm (SPA) to extract ten characteristic wavelengths from the foxtail millet biomass 

following preprocessing of the original spectral reflectance. As shown in Table 3, 

preprocessing significantly altered the characteristic wavelengths of the foxtail millet. 

The characteristic wavelengths of the original spectral reflectance were distributed 

between 409 nm and 1300 nm. After SNV preprocessing, the characteristic wavelengths 

ranged between 516 nm and 751 nm, and 958 nm to 1140 nm. Following MSC 

preprocessing, they ranged between 574 nm and 761 nm, and 956 nm to 1141 nm. After 

1ST preprocessing, the wavelengths were distributed between 447 nm and 1073 nm. This 

indicates that different preprocessing methods affect the extraction of information from 

spectral data differently. 
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Figure 2. Correlation analysis of spectral reflectance with foxtail millet AGB after 

preprocessing. (The figure presents the correlation analysis results between the spectral 

reflectance after preprocessing and the AGB of foxtail millet. The abscissa is the wavelength 

(nm), and the ordinate is the correlation coefficient. The curves of different colors represent the 

correlations between the spectral reflectances after original spectral reflectance (R), Standard 

Normal Variate (SNV), Multiplicative Scatter Correction (MSC), and First Derivative (1ST) 

preprocessing and AGB) 

 

 
Table 3. Characteristic wavelength of foxtail millet 

Preprocessing method Characteristic wavelength (nm) 

R 746/904/459/675/719/1146/554/1300/409/934 

SNV 516/751/589/1001/1140/1108/958/1124/547/678 

MSC 1141/761/1110/1028/956/740/1126/574/994/673 

1ST 999/525/1003/831/447/900/1073/671/976/968 

Note: Original Spectral Reflectance(R), Standard Normal Variate (SNV), Multiple Scattering Correction 

(MSC), First Derivative (1ST) 

 

 

Selection of optimal spectral indices 

As shown in Figures 3 and 4, based on the preprocessing of the original spectral 

reflectance, this study employed an exhaustive method to calculate the correlation 

between all possible combinations of spectral indices and foxtail millet AGB. Table 4 

lists the selected optimal spectral indices. From Table 4, it can be seen that among the 

dual-band spectral indices, the R-RSI (766, 762) constructed from the original spectral 

reflectance has a correlation coefficient with foxtail millet AGB of 0.788. The spectral 

indices SNV-RSI (572, 1045) and MSC-NDSI (765, 766), constructed from SNV and 

MSC preprocessed reflectance respectively, achieved correlation coefficients of 0.803 

and 0.794 with foxtail millet AGB. The 1ST-DSI (537, 684), constructed from 1ST 

preprocessed reflectance, reached a correlation coefficient of 0.824 with foxtail millet 

AGB. 

In the category of three-band spectral indices, the R-TB5 (703, 430, 513) constructed 

from the original spectral reflectance had a correlation coefficient of 0.830 with foxtail 

millet AGB. The R-TB5 (450, 696, 449) constructed from SNV preprocessed reflectance 

achieved a correlation coefficient of 0.837, and the MSC-TB6 (720, 400, 528) constructed 

from MSC preprocessed reflectance reached a correlation coefficient of 0.839. The 1ST-
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TB1 (450, 625, 536), constructed from 1ST preprocessed reflectance, showed the highest 

correlation with foxtail millet AGB, achieving a correlation coefficient of 0.863. It is 

evident that the 1ST preprocessing method significantly enhanced the effective 

information from the spectra, improving the correlation between the spectral indices and 

foxtail millet AGB. Furthermore, the three-band spectral indices showed superior 

correlation with foxtail millet AGB compared to the dual-band spectral indices, and 

correlation coefficients >0.8 indicate strong predictive potential for AGB, enabling 

farmers to adjust irrigation and fertilization in real time. 

 

Figure 3. Correlation coefficient plots between dual-band spectral indices and AGB of foxtail 

millet. (The figure shows the correlation coefficient plots between dual - band spectral indices 

and the AGB of foxtail millet. The abscissa is the wavelength (nm), and the ordinate is the 

correlation coefficient. The curves of different colors represent the correlations between 

different dual - band spectral indices (RSI, NDSI, DSI,) constructed from the original spectral 

reflectance (R), SNV - preprocessed reflectance, MSC - preprocessed reflectance, and 1ST - 

preprocessed reflectance and AGB) 
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Figure 4. Correlation coefficient plot between three-band spectral index and AGB of foxtail 

millet. (The figure presents the correlation coefficient plot between three - band spectral indices 

and the AGB of foxtail millet. The abscissa is the wavelength (nm), and the ordinate is the 

correlation coefficient. The curves of different colors represent the correlations between 

different three - band spectral indices (TB1, TB5, TB6) constructed from the original spectral 

reflectance (R), SNV - preprocessed reflectance, MSC - preprocessed reflectance, and 1ST - 

preprocessed reflectance and AGB) 

 

 
Table 4. Optimal spectral bands and correlation coefficients 

 R SNV MSC 1ST 

RSI (766, 762) 0.788 (572, 1045) 0.803 (767, 765) 0.790 (686, 542) 0.803 

NDSI (766, 765) 0.786 (765, 767) 0.802 (765, 766) 0.794 (849, 1209) 0.805 

DSI (846, 848) 0.748 (765, 767) 0.786 (765, 767) 0.785 (537, 684) 0.824 

TB1 (764, 760, 759) 0.801 (401, 1019, 514) 0.809 (522, 815, 614) 0.812 (451, 626, 697) 0.863 

TB2 (770, 549, 761) 0.810 (1020, 459, 432) 0.824 (741, 515, 400) 0.826 (486, 510, 495) 0.856 

TB3 (504, 736, 676) 0.792 (1013, 596, 514) 0.816 (882, 1114, 760) 0.815 (846, 1230, 1209) 0.831 

TB4 (983, 1271, 762) 0.816 (400, 1020, 516) 0.821 (998, 1260, 759) 0.817 (680, 904, 691) 0.840 

TB5 (703, 430, 513) 0.830 (710, 434, 520) 0.837 (703, 432, 515) 0.835 (904, 680, 696) 0.849 

TB6 (719, 675, 512) 0.820 (1031, 400, 513) 0.829 (720, 400, 528) 0.839 (511, 464,505) 0.837 

Note: The table shows the optimal spectral bands constructed based on different preprocessed spectral 

reflectances and their correlation coefficients with the AGB of foxtail millet. The study calculated the 

correlations between all possible combinations of spectral indices and the AGB of foxtail millet to screen 

out the optimal spectral bands. It can be seen from the table that among the dual - band spectral indices 

 

 

Evaluation of the accuracy of foxtail millet AGB monitoring models 

This study constructed three types of foxtail millet AGB monitoring models based on 

the full spectrum, characteristic wavelengths, and optimized spectral indices. Table 5 

displays the performance of the foxtail millet AGB monitoring models. It is evident that 

the models constructed using spectral data preprocessed with 1ST were the best among 
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the three types (Table 5). Among these, the best performing foxtail millet AGB 

monitoring model was the 1ST-PLS model based on the full spectrum, which achieved 

an R² of 0.834, RMSE of 1.443 t/hm2, and RPD of 2.507. This was followed by the 1ST-

TB1 model based on optimized spectral indices, with an R² of 0.823, RMSE of 1.516 

t/hm2, and RPD of 2.387, and lastly the 1ST-SPA-PLS model based on characteristic 

wavelengths, which had an R² of 0.790, RMSE of 1.721 t/hm2, and RPD of 2.100. 

Therefore, it can be seen that the 1ST spectral preprocessing method significantly 

enhances model accuracy. Figure 5 shows the fitting plots of the best models among the 

three types, indicating that all three models achieved good fitting results and can 

accurately monitor foxtail millet AGB. 

 
Table 5. Evaluation of the accuracy of the foxtail millet AGB monitoring models 

models R2 RMSE RPD 

R-PLS 0.726 1.867 1.936 

SNV-PLS 0.805 1.639 2.205 

MSC-PLS 0.793 1.688 2.141 

1ST-PLS 0.834 1.443 2.507 

R-SPA-PLS 0.664 2.137 1.691 

SNV-SPA-PLS 0.686 1.996 1.811 

MSC-SPA-PLS 0.699 1.948 1.856 

1ST-SPA-PLS 0.790 1.721 2.100 

1ST-TB1 0.823 1.516 2.387 

Note: The table evaluates the accuracy of the foxtail millet AGB monitoring models constructed based 

on the full spectrum, characteristic wavelengths, and optimized spectral indices. Three indicators, the 

coefficient of determination (R²), Root Mean Square Error (RMSE), and Ratio of Performance to 

Deviation (RPD), are used to measure the model performance. Generally, the closer R² is to 1 and the 

smaller RMSE is, the better the fitting and predictive ability of the model; the higher the RPD value, the 

stronger the predictive ability of the model 

 

 

Figure 5. Fitting plots of AGB optimal model for foxtail millet. (The figure shows the fitting 

plots of the AGB optimal models for foxtail millet. The abscissa represents the measured values, 

and the ordinate represents the predicted values. The curves of different colors represent the 

fitting situations of the 1ST - PLS model based on the full spectrum, the 1ST - SPA - PLS model 

based on characteristic wavelengths, and the 1ST - TB1 model based on optimized spectral 

indices) 
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Discussion 

In crop - related research, the accuracy of research results is highly dependent on the 

pre - treatment methods. The methods used in this study, such as SNV, MSC, and 1ST, 

have been widely applied and validated in relevant fields. Rinnan et al. (2009) indicated 

that MSC and SNV can effectively enhance the signal - to - noise ratio of spectral data 

and eliminate the interference of the medium on the spectral curve during the light 

propagation process. Yang et al. (2022) and Yan et al. (2023) compared multiple 

pretreatment methods and concluded that the model constructed after 1ST pretreatment 

had a relatively high accuracy, which is consistent with the conclusion of this study. 

This study, based on preprocessing the original spectral reflectance of foxtail millet 

AGB, explored the capabilities of optimized spectral indices, characteristic wavelength 

methods, and full-spectrum methods in monitoring foxtail millet AGB. The study found 

that besides the spectral reflectance after 1ST preprocessing, the best spectral indices from 

combinations of dual-band optimized using raw, SNV, and MSC preprocessed spectral 

reflectances were all around 760 nm. Similarly, characteristic wavelengths selected using 

SPA also included wavelengths around 760 nm. Previous research, such as that by Cao et 

al. (2022), which studied the optimal vegetation index and appropriate bandwidth for 

monitoring the above-ground biomass of peanuts, showed that the Normalized Red Edge 

Index (NDRE) (λ790, λ720) had high monitoring accuracy. Hansen et al. (2003) used the 

Normalized Difference Vegetation Index (NDVI) and Partial Least Squares (PLS) for 

estimating the above-ground biomass of wheat, found that NDVI had a high correlation 

with biomass in the central wavelength range of 680–750 nm. 

Among the dual-band spectral indices, the 1ST-DSI (537, 684) showed the highest 

correlation with foxtail millet AGB, with a correlation coefficient of 0.824, Wang et al. 

(2024) pointed out the vegetation index DVI has the highest correlation with the biomass 

throughout the entire growth period of rice, which is consistent with the conclusion of 

this study. In the three-band spectral indices, the 1ST-TB1 (451, 626, 697) had the highest 

correlation with foxtail millet AGB, with a correlation coefficient of 0.863, the optimized 

three-band algorithm is an attractive tool for optimizing and identifying central bands (Li 

et al., 2021a). The three-band spectral indices showed significantly higher correlation 

with foxtail millet AGB compared to the dual-band indices, indicating that three-band 

indices can more fully utilize spectral information and mitigate the saturation issues of 

dual-band indices (Zhang et al., 2022). The accuracy of the three types of foxtail millet 

AGB monitoring models built showed that models based on 1ST-preprocessed spectral 

reflectance had significantly improved accuracy compared to those based on raw spectral 

reflectance. This improvement could be due to the reduction or elimination of spectral 

noise affecting the spectral reflectance of the foxtail millet canopy, achieved through 1ST 

preprocessing. Previous studies in crop growth spectral monitoring also demonstrated that 

1ST is an effective method to eliminate spectral noise (Gao et al., 2020; Tong et al., 2022). 

This study further confirms that 1ST is an effective method for processing hyperspectral 

data, contributing significantly to the improved accuracy of foxtail millet AGB 

monitoring models. 

Moreover, this research determined that the optimal model for monitoring foxtail 

millet AGB was the 1ST-PLS (R2=0.834; RMSE=1.443 t/hm2; RPD=2.507), which has 

high accuracy in monitoring plant biomass (Liu et al., 2021, 2022; ElHendawy et al., 

2022). However, the 1ST-TB1 model built using optimized spectral indices also showed 

high accuracy (R2=0.823; RMSE=1.516 t/hm2; RPD=2.387). Compared to the 1ST-PLS 

monitoring model, although the accuracy of the 1ST-TB1 model was slightly lower, the 
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full spectrum model is more complex, using up to 900 wavelengths, while the 1ST-TB1 

model used only three wavelengths. Therefore, considering the complexity of the models, 

the 1ST-TB1 model demonstrates an outstanding phenotype. The 1ST-TB1 index and 

1ST-PLS model highlight the potential of hyperspectral technology to mitigate spectral 

saturation and environmental noise, offering scalable solutions for diverse crops. Their 

integration into UAV or satellite-based systems could revolutionize large-scale biomass 

monitoring, particularly in resource-limited regions where foxtail millet is a staple crop. 

In this study, the foxtail millet AGB monitoring model built using the characteristic 

wavelength method achieved the highest R2 of 0.790. In contrast, the model built using 

the full spectrum achieved the highest R2 of 0.852, indicating that the characteristic 

wavelengths selected by SPA did not contain all effective information of foxtail millet 

AGB. Considering that too many wavelengths might also lead to redundancy and 

increased complexity of the models, developing hyperspectral models for agriculture, 

future research should balance wavelength selection to avoid redundancy and simplify 

models for field deployment. Next, integrate UAV - based systems and validate across 

diverse zones. Also, incorporate multi - temporal data and machine learning to mitigate 

environmental impacts for more accurate models, in previous research on constructing 

crop biomass monitoring models, different models have demonstrated diverse advantages. 

Some studies have indicated that the Random Forest (RF) (Xian et al., 2024; Dong et al., 

2024b) model performs optimally, while others have pointed out that the Convolutional 

Neural Network (CNN) (Zhou et al., 2024) exhibits higher accuracy. Based on this, to 

effectively improve the monitoring accuracy of foxtail millet biomass, it is necessary to 

comprehensively apply multiple machine learning methods. 

This technology can accurately acquire real - time information on the growth of foxtail 

millet, enabling the fine - grained management of water and fertilizer resources. It 

effectively prevents resource waste and environmental pollution, thereby enhancing the 

resilience of the agricultural system in the face of climate change and providing strong 

support for the development of global sustainable agriculture. 

Conclusion 

The 1ST-PLS model built on the full spectrum could accurately monitor foxtail millet 

AGB (R2=0.834; RMSE=1.443 t/hm2; RPD=2.507). This achievement can contribute to 

precision agriculture, enabling accurate understanding of foxtail millet growth conditions. 

It provides a scientific basis for rational resource allocation and determination of harvest 

time, thus enhancing agricultural production efficiency. 

Acknowledgements. This work was supported by the hyperspectral monitoring study of photoperiod 

sensitivity traits in foxtail millet (CXGC2023038), precise identification of foxtail millet germplasm 

resources in the summer millet region (19240649), and funding for the "Technology Innovation 

Enhancement Project" by Shanxi Agricultural University. 

REFERENCES 

[1] Cao, Z. S., Li, Y. D., Huang, J. B., Sun, B. F., Ye, C., Shu, S. F., Wu, L. F., Tian, Y. C. 

(2022): Sensitive vegetation indices and optimal bandwidths for monitoring peanut LAI 

and AGB. – Chinese Journal of Oil Crop Sciences 44(6): 1320-1328. 



Qiao et al.: Research on hyperspectral monitoring of foxtail millet biomass 

- 3769 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(2):3757-3771. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/2302_37573771 

© 2025, ALÖKI Kft., Budapest, Hungary 

[2] Diao, X. M. (2019): Progresses in stress tolerance and field cultivation studies of orphan 

cereals in China. – Scientia Agricultura Sinica 52(22): 3943-3949. 

[3] Dong, Z., Yang, W. D., Zhang, M. J., Zhu, H. F., Wang, C. (2019): Estimation models of 

maize leaf SPAD value based on hyperspectral remote sensing. – Crops 3: 126-131. 

[4] Dong, E. W., Wang, Y., Wang, J. S., Liu, Q. X., Huang, X. L., Jiao, X. Y. (2024a): Effects 

of nitrogen fertilization levels on grain yield, plant nitrogen utilization characteristics and 

grain quality of foxtail millet. – Scientia Agricultura Sinica 57(2): 306-318. 

[5] Dong, Z. Y., Lv, S. Q., Wei, Y. X., Zhu, Y. W., Meng, X. X. (2024b): Estimation of 

Aboveground Biomass of Rape Based on UAV - borne Multispectral Remote Sensing. – 

South China Agriculture 18(13): 172-177. 

[6] ElHendawy, S., AlSuhaibani, N., Mubushar, M., Tahir, M. U., Marey, S., Refay, Y., Tola, 

E. (2022): Combining hyperspectral reflectance and multivariate regression models to 

estimate plant biomass of advanced spring wheat lines in diverse phenological stages under 

salinity conditions. – Applied Sciences 12(4): 1983. 

[7] Feng, Z. H., Li, X., Duan, J. Z., Gao, F., He, L., Yang, T. C., Rong, Y. S., Song, L., Yin, F. 

(2022): Hyperspectral remote sensing monitoring of wheat powdery mildew based on 

feature band selection and machine learning. – Acta Agronomica Sinica 48(9): 2300-2314. 

[8] Gao, Y., Wang, Y. C., Gu, X. H., Zhou, X. W., Ma, Y., Xuan, X. Y. (2020): Quantitative 

inversion of soil organic matter and total nitrogen content based on differential 

transformation. – Jiangsu Agricultural Sciences 48(24): 220-225. 

[9] Gong, R. X., Lu, X. H., Zhang, H. N., Wang, Q., Chen, Z. Q., Yang, B. C., Ma, L. L. (2023): 

Model analysis of estimating soybean above-ground biomass by hyperspectral vegetation 

index. – Soybean Science 42(3): 352-359. 

[10] Guo, D. D., Huang, S. M., Zhang, S. Q., Nie, S. W. (2014): Comparative analysis of various 

hyperspectral prediction models of fluvo-aquic soil organic matter. – Transactions of the 

Chinese Society of Agricultural Engineering 30(21): 192-200. 

[11] Hansen, P. M., Schjoerring, J. K. (2003): Reflectance measurement of canopy biomass and 

nitrogen status in wheat crops using normalized difference vegetation indices and partial 

least squares regression. – Remote Sensing of Environment 86(4): 542-553. 

[12] Jiang, Y., Wang, L., Yang, Y., Cai, Y. T., Zhang, X. H., Wang, H. Z., Wang, S. D. (2022): 

Application of UAV hyperspectral imaging technology in crop growth information 

monitoring. – Journal of Northeast Agricultural University 53(3): 88-96. 

[13] Kang, L., Gao, R., Kong, Q. M., Jia, Y. J., Shi, Y. B., Su, Z. B. (2020): Estimation of SPAD 

value of rice leaves based on hyperspectral image. – Journal of Northeast Agricultural 

University 51(10): 89-96. 

[14] Kuplich, T. M., Curran, P. J., Atkinson, P. M. (2005): Relating SAR image texture to the 

biomass of regenerating tropical forests. – International Journal of Remote Sensing 26(21): 

4829-4854. 

[15] Lata, C., Gupta, S., Prasad, M. (2013): Foxtail millet: A model crop for genetic and 

genomic studies in bioenergy grasses. – Critical Reviews in Biotechnology 33(3): 328-343. 

[16] Li, F., Li, D., Elsayed, S., Hu, Y. C., Schmidhalter, U. (2021a): Using optimized three-

band spectral indices to assess canopy N uptake in corn and wheat. – European Journal of 

Agronomy 127: 126286. 

[17] Li, G. Y., Cong, X. J., Li, G. Q. (2021b): Effects of sowing date on agronomic characters, 

yield and quality of foxtail millet variety Jinxuan 6. – Shandong Agricultural Sciences 

53(3): 36-40. 

[18] Li, S. G., Liu, F., Liu, M., Cheng, R. H., Xia, E. J., Diao, X. M. (2021c): Current status and 

future prospective of foxtail millet production and seed industry in China. – Scientia 

Agricultura Sinica 54(3): 459-470. 

[19] Li, G. Y., Cong, X. J., Li, G. Q., Zhao, N., Chen, E. Y., Li, L. (2022a): Effect of sowing 

date of foxtail millet on crop productivity in foxtail millet/peanut intercropping system. – 

Journal of Nuclear Agricultural Sciences 36(5): 1008-1016. 



Qiao et al.: Research on hyperspectral monitoring of foxtail millet biomass 

- 3770 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(2):3757-3771. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/2302_37573771 

© 2025, ALÖKI Kft., Budapest, Hungary 

[20] Li, S. G., Liu, F., Liu, M., Zhao, W. Q., Zhao, Y. (2022b): Historical evolution and future 

development direction of foxtail millet planting in China. – Science and Technology of 

Cereals, Oils and Foods 30(4): 60-67+10. 

[21] Liu, Y., Zhang, H., Feng, H. K., Sun, Q., Huang, J., Wang, J. J., Yang, G. J. (2021): 

Estimation of potato above ground biomass based on hyperspectral images of UAV. – 

Spectroscopy and Spectral Analysis 41(9): 2657-2664. 

[22] Liu, Y., Feng, H. K., Yue, J. B., Li, Z. H., Jin, X. L., Fan, Y. G., Feng, Z. H., Yang, G. J. 

(2022): Estimation of aboveground biomass of potatoes based on characteristic variables 

extracted from UAV hyperspectral imagery. – Remote Sensing 14(20): 5121. 

[23] Lv, J. Z. (2020): Advance in genetic diversity analysis of foxtail millet. – Journal of Hebei 

Agricultural University 43(5): 40-45. 

[24] Marshall, M., Thenkabail, P. (2015): Developing in situ non-destructive estimates of crop 

biomass to address issues of scale in remote sensing. – Remote Sensing 7(1): 808-835. 

[25] Rinnan, A., van den Berg, F., Engelsen, S. B. (2009): Review of the most common pre-

processing techniques for near-infrared spectra. – Trends in Analytical Chemistry 28(10): 

1201-1222. 

[26] Tong, X., Yang, Z. L., Zhang, Y. R., Wu, Y. C., Duan, L. M. (2022): Estimation of pasture 

aboveground biomass using different orders of differential hyperspectral vegetation indices. 

– Acta Agrestia Sinica 30(9): 2438-2448. 

[27] Wang, W. K., Zhang, J. Y., Wang, H., Cao, Q., Tian, Y. C., Zhu, Y., Cao, W. X., Liu, X. 

J. (2023a): Non-destructive monitoring of rice growth key indicators based on fixed-wing 

UAV multispectral images. – Scientia Agricultura Sinica 56(21): 4175-4191. 

[28] Wang, X. F., Liang, D. L., Li, Z. Y., Chen, Y. J., Jiang, J. F., Zheng, A. H., Gao, T. T., Ren, 

X. L. (2023b): Response of dry matter distribution and transport in millet covered with 

plastic film to planting density. – Molecular Plant Breeding 21(23): 7959-7966. 

[29] Wang, D., Sun, R., Su, Y., Yang, B. (2024): Rice biomass estimation based on multispectral 

imagery from unmanned aerial vehicles. – Transactions of the Chinese Society of 

Agricultural Engineering 40(17): 161-170. 

[30] Xian, G. L., Liu, J. G., Lin, Y. X., Li, S., Bian, C. S. (2024): Multi-Feature Fusion for 

Estimating Above-Ground Biomass of Potato by UAV Remote Sensing. – Plants 13(23): 

3356. 

[31] Xie, Y. K., Song, J. Y., Liu, M., Meng, W. Z., Feng, M. C., Wang, C., Yang, W. D., Qiao, 

X. X., Yang, C. B. (2023): Hyperspectral monitoring of proline content in winter wheat 

under water stress. – Chinese Journal of Applied Ecology 34(2): 463-470. 

[32] Yan, X. B., Wang, Z. G., Wang, Y. X., Feng, M. C., Wang, C., Xiao, L. J., Yu, J. T., Yang, 

W. D. (2022): Hyperspectral monitoring of effects of drought stress on photosynthetic 

pigment content of winter wheat. – Journal of Shanxi Agricultural Sciences 50(9): 1269-

1277. 

[33] Yan, X. B., Qiao, X. X., Yang, S., Feng, M. C., Song, X. Y., Zhang, M. J., Xiao, L. J., 

Zhang, Z., Shafiq, F., Yang, W. D., Wang, C. (2023): Hyperspectral response and 

monitoring study of soil moisture content based on the optimized spectral index. – Soil 

Science Society of America Journal 87(2): 216-230. 

[34] Yang, H., Yang, G. J., Gaulton, R., Zhao, C. J., Li, Z. H., Taylor, J., Wicks, D., Minchella, 

A., Chen, E., Yang, X. T. (2019a): In-season biomass estimation of oilseed rape (Brassica 

napus L.) using fully polarimetric SAR imagery. – Precision Agriculture 20(3): 630-648. 

[35] Yang, Y. B., Zhang, H., Wang, R. F., Deng, L. G., Qin, L., Chen, E. Y., Guan, Y. A. 

(2019b): Determination of yellow pigment content in foxtail millet. – Journal of the 

Chinese Cereals and Oils Association 34(3): 121-125. 

[36] Yang, S., Wang, C., Yang, W. D., Feng, M. C., Liu, T. T., Qiao, X. X., Li, G. X., Zhang, 

X., Xu, J., Zhang, Y. (2020): Effect of pretreatments on spectral estimation of soil organic 

matter (SOM). – Journal of Shanxi Agricultural Sciences 48(10): 1637-1640+1645. 

[37] Yang, C. B., Feng, M. C., Song, L. F., Jing, B. H., Xie, Y. K., Wang, C., Qin, M. X., Yang, 

W. D., Xiao, L. J., Sun, J. J., Zhang, M. J., Song, X. Y., Kubar, M. S. (2022): Hyperspectral 



Qiao et al.: Research on hyperspectral monitoring of foxtail millet biomass 

- 3771 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(2):3757-3771. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN1785 0037 (Online) 

DOI: http://dx.doi.org/10.15666/aeer/2302_37573771 

© 2025, ALÖKI Kft., Budapest, Hungary 

monitoring of soil urease activity under different water regulation. – Plant and Soil 475(1-

2): 431-446. 

[38] Yue, J. B., Yang, G. J., Tian, Q. J., Feng, H. K., Xu, K. J., Zhou, C. Q. (2019): Estimate of 

winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image 

textures and vegetation indices. – ISPRS Journal of Photogrammetry and Remote Sensing 

150: 226-244. 

[39] Zhang, X., Sun, H., Qiao, X. X., Yan, X. B., Feng, M. C., Xiao, L. J., Song, X. Y., Zhang, 

M. J., Shafiq, F., Yang, W. D., Wang, C. (2022): Hyperspectral estimation of canopy 

chlorophyll of winter wheat by using the optimized vegetation indices. – Computers and 

Electronics in Agriculture 193: 106654. 

[40] Zhang, M., Liu, T., Sun, C. M. (2023): Wheat biomass estimation based on UAV 

hyperspectral data. – Journal of Anhui Agricultural Sciences 51(17): 182-186+189. 

[41] Zhao, S. L., Mujahid, H., Wang, G. B., Bian, Z. H., Wang, M., Lan, Y. B. (2024): Research 

progress of crop growth monitoring based on UAV remote sensing. – Jiangsu Agricultural 

Sciences 52(8): 8-15. 

[42] Zheng, Z. K., Chang, Q. R., Jiang, S. Y., Fu, X. T., Li, K., Zhang, Z. J., Mo, H. Y. (2023): 

Estimation of maize SPAD value based on fractional differential of UAV hyperspectral. – 

Journal of Northeast Agricultural University 54(2): 66-74. 

[43] Zhou, M. G., Yan, Y. C., Gao, W., He, J. Y., Li, X. S., Niu, Z. J. (2014): Estimating 

Aboveground Biomass of Maize Based on Multispectral Remote Sensing and 

Convolutional Neural Network. – Transactions of the Chinese Society for Agricultural 

Machinery 55(9): 238-248. 

[44] Zhu, C. C., Fu, S. J., Qin, N., Wang, C. Y., Dai, S. T., Song, Y. H., Wei, X., Li, J. X. 

(2023a): Effects of phosphorus fertilizer application depth on root distribution, nitrogen 

uptake and utilization and yield of foxtail millet. – Journal of Henan Agricultural Sciences 

52(12): 22-30. 

[45] Zhu, Y. J., Tao, X. Y., Chen, X. F., Su, X. X., Liu, J. K., Li, X. W. (2023b): Estimation of 

above-ground biomass of winter wheat based on vegetation indexes and texture features of 

multispectral images captured by unmanned aerial vehicle. – Acta Agriculturae 

Zhejiangensis 35(12): 2966-2976. 

 


